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ABSTRACT 

Traditional data lineage tools trace source-to-destination paths 

but often lack contextual clarity, creating a disconnect between 

technical implementation and business interpretation. This 

paper introduces explainable data lineage AI agents that 

generate natural language narratives explaining the rationale 

behind each transformation, covering business logic, risk 

implications, and data quality impact. These agents enable 

conversational interrogation of data pipelines by combining 

metadata intelligence, governance policies, and large language 

models (LLMs), tailored to organizational roles. The proposed 

architecture delivers multi-persona reports: executive 

summaries for leadership, compliance narratives for auditors, 

and technical insights for engineers, all derived from a unified 

lineage graph. Challenges remain in handling ambiguity and 

incomplete metadata, suggesting directions for future research.   
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1. INTRODUCTION 
Data lineage is essential in modern enterprises, particularly in 

regulated industries where tracking data transformations is both 

operationally critical and legally mandated. Existing lineage 

tools focus heavily on technical metadata, creating a divide 

between data flow representation and business comprehension. 

This disconnect undermines trust in analytics and complicates 

regulatory compliance [1]. 

Conventional lineage systems excel at mapping source-to-

destination pathways but lack semantic depth. Their engineer-

centric visualizations pose accessibility barriers for business 

analysts, compliance officers, and executives who require 

interpretive context rather than structural mapping. In regulated 

environments, this limitation translates into business risk, 

especially when organizations struggle to explain the 

movement of sensitive data during audits [1]. 

Explainable lineage agents represent a paradigm shift in data 

governance approaches. Rather than treating lineage as static 

metadata, these agents transform technical pipelines into 

responsive, role-specific narratives. By integrating metadata 

intelligence with natural language generation, they enable non-

technical stakeholders to understand complex data flows 

without engineering support [2]. 

This paper proposes a multi-persona architecture that adapts 

explanations to different user roles, providing executive 

summaries for leadership, compliance-oriented narratives for 

auditors, and technical details for engineers, all derived from a 

unified lineage graph. The subsequent sections explore related 

work, detail the proposed architecture, outline implementation 

strategies, illustrate practical applications through use cases, 

describe evaluation methodologies, discuss findings, and 

conclude with key contributions and future research directions. 

2. RELATED WORK 

Data lineage development encompasses four primary domains: 

conventional lineage systems, explainable AI frameworks, 

metadata intelligence platforms, and governance 

methodologies. Commercial lineage tools have evolved 

significantly, offering automated metadata capture and 

visualization for data processing frameworks. Despite 

excellence in technical metadata capture, implementation 

studies reveal persistent gaps between technical capabilities 

and business value. Organizations frequently maintain separate 

business glossaries disconnected from technical lineage, 

necessitating manual reconciliation. Open standards have 

addressed interoperability challenges but prioritize structural 

consistency over semantic enrichment [1]. 

Interpretable machine learning provides promising approaches 

for enhancing lineage understanding. Algorithms originally 

developed for model explanation have demonstrated 

applicability in metadata contexts, offering new pathways for 

clarifying complex data transformations. Within lineage 

contexts, LIME and SHAP methodologies illuminate 

transformation drivers effectively. Recent advances in 

language model-based narrative generation show considerable 

potential for translating technical artifacts into accessible 

explanations, making complex concepts comprehensible to 

diverse stakeholders without requiring specialized domain 

knowledge [2]. 

Modern metadata management platforms provide essential 

foundation technologies for explainable lineage. Contemporary 

catalog systems capture increasingly rich contextual 

information, including temporal change tracking, access 

patterns, and quality metrics. Despite these advancements, 

enterprise implementations reveal persistent challenges in 

connecting technical metadata with business meaning, with 

systems typically maintained separately, creating semantic 

fragmentation that impedes holistic understanding [1]. 

Table 1. Foundational Domains Contributing To 

Explainable Data Lineage Agent Development, Showing 

Key Elements and Their Relevance To Lineage 

Explanation Capabilities [1, 2] 

Domain Key Elements 
Relevance to Lineage 

Agents 

Traditional 

Lineage 

Systems 

Commercial 

tools, Open 

standards 

Strong technical tracking, 

Weak business context 

Explainable 

AI 

Frameworks 

LIME, SHAP, 

LLM narratives 

Translation of technical to 

accessible language 

Metadata 

Platforms 

Catalog systems, 

Schema tracking 

Foundation for context 

enrichment 

Governance 

Frameworks 

ABAC, Policy-

as-code, Data 

contracts 

Context for compliance 

explanations 

 

https://jaaionline.org/


Journal of Advanced Artificial Intelligence 

Volume 2 – No.3, December 2025 

18 

Governance frameworks have evolved in response to 

increasing regulatory requirements and organizational data 

complexity. Attribute-based access control models enable 

policy decisions based on rich metadata attributes rather than 

rigid role definitions. Policy-as-code initiatives represent a shift 

toward programmatic governance, while data contracts 

formalize expectations between data producers and consumers. 

These approaches provide essential context for meaningful 

lineage explanations, yet typically operate in parallel with 

rather than integrated into lineage systems [2]. 

3. PROPOSED ARCHITECTURE  
The explainable data lineage agent architecture consists of five 

key components designed to transform technical metadata into 

human-comprehensible narratives. Each layer performs 

specialized functions while maintaining seamless integration 

through standardized interfaces and data contracts. The 

following subsections detail each component's technical 

specifications, processing logic, and implementation 

considerations. 

3.1 Ingest Layer 
The Ingest Layer forms the foundation of the architecture, 

capturing lineage signals from diverse sources including 

ETL/ELT workflows, change management systems, and data 

quality scanners. This component employs specialized 

connectors built on Apache Kafka Connect framework that 

extract transformation logic from platforms such as 

Informatica, Talend, dbt, and Apache Airflow. The connectors 

operate in both polling mode (configurable intervals from 30 

seconds to 5 minutes) and event-driven mode via webhooks for 

real-time capture [3]. 

Signal processing follows a defined sequence: raw events are 

first validated against JSON schemas, then normalized to a 

unified JSON-LD representation that preserves semantic 

relationships. The normalization process, implemented using 

Apache Flink, appends correlation identifiers linking technical 

changes to business requirements captured in change 

management systems like Jira or ServiceNow. This correlation 

establishes the foundation for meaningful explanations by 

connecting implementation details with business intent. 

Quality scanner interfaces integrate with frameworks such as 

Great Expectations and AWS Deequ, ingesting validation 

results and data quality metrics that later inform explanation 

confidence levels [3]. 

3.2 Lineage Extraction and Annotation 

Service 
The Lineage Extraction and Annotation Service processes 

ingested signals through specialized parsing algorithms tailored 

to different transformation types. Declarative transformations 

like SQL undergo Abstract Syntax Tree (AST) based pattern 

matching using Apache Calcite, achieving 95-98% accuracy 

with processing times under 100 milliseconds per query. 

Programmatic transformations in PySpark or Pandas require 

static code analysis using Tree-sitter parsers, yielding 85-92% 

accuracy with 200-500 milliseconds processing time. For 

complex stored procedures, ANTLR4-based control flow 

analysis handles procedural logic with 80-88% accuracy. When 

automated parsing encounters ambiguous or proprietary 

transformations, a hybrid approach leveraging LLM-assisted 

interpretation provides fallback coverage [3]. 

The annotation framework operates through three sequential 

enrichment phases. Semantic mapping first connects technical 

column names to business glossary terms using fuzzy matching 

algorithms with a Levenshtein distance threshold of 0.85, 

supplemented by sentence-transformer embeddings for 

semantic similarity detection. Governance classification then 

applies regex patterns and machine learning classifiers to 

identify sensitive data elements (PII, PHI, financial data) and 

map them to applicable regulatory frameworks including 

GDPR, HIPAA, and CCPA. Quality contextualization finally 

associates data quality metrics with lineage nodes, calculating 

composite scores for freshness, completeness, and validity. The 

enriched metadata schema captures business terms, sensitivity 

levels, regulatory tags, quality scores, ownership information, 

and certification timestamps [3]. 

3.3 Graph Storage Layer 
The Graph Storage Layer employs specialized graph database 

technology optimized for complex lineage relationships. The 

architecture supports Neo4j for centralized deployments 

handling up to 100 million nodes and 500 million edges, while 

JanusGraph with Cassandra backend accommodates 

distributed environments scaling beyond one billion nodes. The 

graph schema defines five primary node types: DataAsset 

(tables, files, API endpoints), Transformation (ETL jobs, 

queries, scripts), Column (individual data fields), Policy 

(governance rules), and QualityMetric (measurement records). 

Edge types capture semantic relationships including 

DERIVES_FROM for column-level lineage, PRODUCES and 

CONSUMES for transformation inputs/outputs, 

GOVERNED_BY for policy associations, and 

HAS_QUALITY for metric linkages [4]. 

Query optimization employs multiple strategies to maintain 

performance at enterprise scale. Path-based indexing using B-

tree structures on source, target, and depth attributes accelerates 

ancestry and descendant queries by 10-50x for deep traversals. 

Materialized lineage paths pre-compute complete paths for 

critical regulated assets, achieving 100x performance 

improvement for compliance reporting scenarios. Query result 

caching through Redis with configurable time-to-live (default 

5 minutes) provides 20-30x speedup for repeated exploration 

queries. Parallel traversal algorithms implement multi-threaded 

breadth-first and depth-first search for complex impact 

analysis, delivering 3-5x improvement on multi-core systems 

[4]. 

3.4 LLM Explanation Layer 
The LLM Explanation Layer transforms structured lineage 

information into natural language narratives through carefully 

engineered prompts combining structural templates with 

dynamically retrieved context. The modular prompt 

architecture allocates token budgets across six components: 

system context defining agent role (200-300 tokens), serialized 

lineage subgraph (500-2000 tokens), business context from 

glossaries and policies (300-500 tokens), persona-specific 

instructions (150-250 tokens), user query context (50-200 

tokens), and output schema requirements (100-150 tokens). 

Selective graph traversal algorithms identify relevant metadata 

within three hops of the query focus while filtering extraneous 

information, optimizing both relevance and processing 

efficiency [4]. 

Persona adaptation mechanisms tailor explanations through 

configurable parameters for each organizational role. 

Executive personas receive low technical depth with high 

business context, limiting responses to 100-200 words using 

business glossary terminology without code examples. 

Compliance officer personas balance technical and regulatory 

detail in 300-500 word responses emphasizing audit trails and 

policy relationships. Data engineer personas receive maximum 

technical depth with full syntax examples and detailed graph 
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visualizations in 500-1000 word responses. The system 

supports three deployment models: cloud API integration with 

GPT-4 or Claude offering 1-3 second latency, hybrid 

deployments processing sensitive data locally while using 

cloud APIs for general queries, and fully on-premises 

deployment using Llama 3 70B or Mixtral models with 3-8 

second latency ensuring complete data privacy [4]. 

3.5 User Interface Layer 
The User Interface Layer provides multiple interaction 

modalities serving different user needs and integration 

requirements. The primary conversational interface, built with 

React and WebSocket connections, enables natural language 

queries with follow-up questions for exploratory discovery 

across all persona types. A visual graph explorer using D3.js 

and Neo4j Bloom provides data engineers with interactive 

navigation, filtering, and drill-down capabilities. Embedded 

widgets delivered via iframe with REST API backend integrate 

lineage explanations directly into existing business intelligence 

dashboards, providing contextual help without workflow 

disruption. A command-line interface built with Python Click 

supports DevOps engineers and automation pipelines, while a 

FastAPI gateway with OAuth 2.0 authentication enables 

programmatic access for custom integrations [4]. 

Role-based access control governs capabilities across five user 

categories. All users can view lineage and query explanations. 

Analysts and engineers gain access to technical implementation 

details. Engineers and compliance officers can modify 

annotations and configure governance policies. Administrative 

functions including system configuration and user management 

are restricted to administrator roles. This layered permission 

model ensures appropriate access while maintaining security 

boundaries aligned with organizational data governance 

requirements [4]. 

3.6 Architecture Integration 
Table 2 presents a comprehensive summary of all architecture 

components, their functions, key features, and primary 

implementation technologies. 

Table 2. Architecture Components of Explainable Lineage 

Agents Showing Primary Function, Key Features, and 

Implementation Technologies [3, 4] 

Layer Function Key Features 

Ingest 
Signal 

collectio
n 

ETL/ELT connectors, Change 
management integration, Quality 

scanners 

Extraction & 
Annotation 

Context 
enrichme

nt 

Parsing algorithms, Business 
context mapping, Governance 

classification 

Graph 
Storage 

Relations
hip 

persisten
ce 

Property graphs, Query 
optimization, Scaling capabilities 

LLM 
Explanation 

Narrative 
generatio

n 

Prompt engineering, Persona 
adaptation, Context retrieval 

User 
Interface 

Human 
interacti

on 

Conversational interface, 
Embedded analytics, Role-based 

customization 

 

Figure 1 illustrates the comprehensive architecture showing 

data flows between all five layers, external system integration 

points, and the progression from raw lineage signals to persona-

adapted explanations. 

 

Fig 1: Comprehensive architecture diagram of the 

Explainable Data Lineage AI System showing data flows 

between components and integration points [3, 4, 6, 7] 

Collectively, these components form an integrated architecture 

that progressively transforms raw lineage signals into 

contextually rich explanations accessible to diverse 

stakeholders. The modular design enables incremental 

implementation and integration with existing enterprise 

systems through standardized interfaces, supporting both 

cloud-native and hybrid deployment models while maintaining 

flexibility to adapt as organizational data practices mature. 

4. IMPLEMENTATION STRATEGY  
Implementing explainable data lineage agents requires strategic 

technology selection and a structured approach that balances 

immediate value with long-term capability development. This 

section details the infrastructure requirements, metadata 

standardization approaches, annotation frameworks, and 

phased deployment methodology necessary for successful 

implementation. 

4.1 Infrastructure and Technology Stack 
At the infrastructure layer, event streaming platforms provide 

the foundation for capturing asynchronous lineage signals 

across diverse enterprise systems. Apache Kafka serves as the 

primary event backbone, offering durable message storage with 

configurable retention periods ranging from 7 days for transient 

signals to 90 days for audit-critical lineage events. The 

streaming infrastructure handles peak throughput requirements 

of 10,000-50,000 lineage events per second for large enterprise 

deployments, with horizontal scaling achieved through 

partition distribution across broker clusters [5]. 

Extraction and annotation services employ polyglot 

architectures combining JVM-based technologies for 

performance-critical processing with Python frameworks for 

machine learning augmentation. The core parsing engine, 

implemented in Scala for optimal JVM performance, processes 

SQL and transformation logic with sub-100ms latency 

requirements. Python microservices handle ML-based 

annotation tasks including semantic similarity computation, 

sensitivity classification, and quality scoring, communicating 

with the parsing engine through gRPC interfaces that maintain 

type safety while enabling language interoperability. Container 

orchestration through Kubernetes enables independent scaling 

of these components, with parsing services typically requiring 

3-5x the replica count of annotation services during peak ETL 

windows [5]. 

Storage implementations favor graph databases that naturally 

express complex relationships inherent in lineage data. Neo4j 

deployments utilize causal clustering with a minimum of three 

core servers for high availability, supplemented by read 

replicas positioned geographically close to user populations. 
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For organizations requiring distributed storage beyond single-

cluster capacity, JanusGraph deployments leverage Apache 

Cassandra for the storage backend, providing linear scalability 

while maintaining sub-second query performance through 

careful index design and query optimization. Redis clusters 

provide caching layers with 64-256 GB memory allocation 

depending on query patterns and user concurrency 

requirements [5]. 

The explanation layer presents unique challenges due to the 

evolving landscape of language models. Cloud-based API 

integration with providers such as OpenAI or Anthropic offers 

rapid deployment with minimal infrastructure investment, 

suitable for organizations without strict data residency 

requirements. Hybrid architectures route sensitive lineage 

queries containing PII or proprietary business logic to on-

premises models while leveraging cloud APIs for general 

explanations, implemented through a routing layer that 

classifies query sensitivity using the same classifiers employed 

in the annotation service. Fully on-premises deployments 

utilize quantized versions of open-source models including 

Llama 3 70B (4-bit quantization requiring 40GB VRAM) or 

Mixtral 8x7B (requiring 24GB VRAM), deployed on NVIDIA 

A100 or H100 GPU clusters with typical configurations of 2-4 

GPUs per inference server [5]. 

4.2 Metadata Standardization Framework 
Metadata standardization forms a critical foundation that 

enables consistent interpretation across heterogeneous 

platforms. Effective approaches implement layered metadata 

models that distinguish between structural elements and 

semantic attributes while employing formal ontologies to 

resolve terminological inconsistencies. The standardization 

framework operates across four distinct layers: physical 

metadata capturing storage locations and formats, structural 

metadata defining schemas and relationships, semantic 

metadata providing business meaning, and governance 

metadata encoding policies and ownership [5]. 

Physical metadata standardization normalizes storage 

references across cloud platforms (S3, Azure Blob, GCS), on-

premises systems (HDFS, NAS), and database platforms into a 

unified resource identifier scheme. Structural metadata 

employs Apache Avro schemas for cross-platform 

compatibility, with schema registry integration ensuring 

version control and backward compatibility validation. 

Semantic metadata standardization leverages W3C SKOS 

(Simple Knowledge Organization System) for business 

glossary representation, enabling hierarchical concept 

relationships and multilingual label support. Governance 

metadata utilizes a custom ontology extending the Data Catalog 

Vocabulary (DCAT) to represent ownership, classification, 

retention policies, and regulatory applicability [5]. 

Organizations prioritize critical metadata dimensions based on 

business impact and regulatory significance rather than 

pursuing perfect standardization across all systems. A 

prioritization matrix scores metadata elements across four 

dimensions: regulatory requirement (mandatory for 

compliance vs. optional), business criticality (revenue-

impacting vs. operational), technical feasibility (automated 

extraction vs. manual curation), and maintenance burden (static 

vs. frequently changing). Elements scoring above threshold 

values (typically 7/10 aggregate score) receive immediate 

standardization investment, while lower-priority elements enter 

a backlog for incremental improvement. 

 

4.3 Business Context Annotation 

Framework 
Business context annotation frameworks bridge the 

fundamental gap between technical implementation and 

organizational meaning through classification hierarchies 

aligned with business domains. The annotation framework 

implements a three-tier hierarchy: domain classification 

(Finance, Operations, Customer, Product), functional 

classification (Reporting, Analytics, Operational, Regulatory), 

and sensitivity classification (Public, Internal, Confidential, 

Restricted). Each data asset receives classifications across all 

three dimensions, with inheritance rules propagating 

classifications through lineage relationships [5]. 

Semantic annotation employs both automated and human-in-

the-loop approaches. Automated annotation utilizes pre-trained 

sentence transformer models (all-MiniLM-L6-v2 for efficiency 

or all-mpnet-base-v2 for accuracy) to compute embeddings for 

technical column names and descriptions, matching against 

business glossary term embeddings with cosine similarity 

thresholds of 0.75 for automatic acceptance and 0.60-0.75 for 

human review queuing. Human annotators review suggested 

mappings through a dedicated curation interface, with feedback 

incorporated into model fine-tuning on a quarterly basis to 

improve domain-specific accuracy [5]. 

Governance policy mapping extends these frameworks to 

incorporate regulatory requirements, formalizing relationships 

between technical implementations and compliance 

expectations. Policy definitions utilize a structured format 

specifying applicable data classifications, required controls 

(encryption, masking, access logging), retention requirements, 

and cross-border transfer restrictions. The mapping engine 

evaluates each data asset against applicable policies based on 

sensitivity classification and data subject residency, generating 

compliance status indicators that inform lineage explanations. 

For GDPR-regulated data, the framework tracks lawful basis 

for processing, data subject rights applicability, and third-party 

sharing agreements, enabling explanations that address 

regulatory audit requirements [5]. 

4.4 Phased Implementation Methodology 
Implementation follows a phased approach designed to deliver 

incremental value while building organizational capability. 

Figure 2 illustrates the five-phase implementation methodology 

with key activities, deliverables, and success criteria for each 

phase. 

Phase 1 - Foundation (Weeks 1-6): Signal ingestion 

infrastructure deployment begins with critical data pipelines 

supporting regulatory reporting or high-value business 

analytics. This phase establishes Kafka clusters, deploys initial 

connectors for 2-3 priority source systems (typically the 

primary data warehouse, main ETL orchestrator, and primary 

BI platform), and implements basic schema validation. Success 

criteria include successful capture of lineage events from target 

systems with less than 0.1% event loss and sub-second 

ingestion latency [6]. 

Phase 2 - Context Enrichment (Weeks 7-14): Context 

annotation requires cross-functional collaboration to establish 

meaningful business context. Data stewards from business 

domains participate in glossary development workshops, 

producing initial mappings for 500-1000 critical business 

terms. Technical teams implement the annotation pipeline with 

automated classification achieving 80% precision on sensitivity 

detection. Success criteria include glossary coverage of critical 

reporting elements and annotation pipeline processing 95% of 
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lineage events within SLA [6]. 

Phase 3 - Graph Construction (Weeks 15-22): Graph 

construction involves specialized query patterns optimized for 

common lineage questions. This phase deploys the graph 

database cluster, implements the schema design from Section 

3.3, and develops query templates for impact analysis, root 

cause investigation, and compliance reporting. Performance 

optimization ensures sub-3-second response times for 90th 

percentile queries spanning up to 50 lineage hops. Success 

criteria include complete lineage graph for priority data 

domains and query performance meeting defined SLAs [6]. 

Phase 4 - Explanation Generation (Weeks 23-30): Explanation 

generation requires experimentation to balance technical 

accuracy with narrative clarity. This phase implements the 

LLM integration layer, develops persona-specific prompt 

templates through iterative refinement with representative 

users, and establishes evaluation frameworks for explanation 

quality. A/B testing with user panels refines explanation styles 

until achieving 80% user satisfaction scores across all persona 

types. Success criteria include deployed explanation capability 

with validated user acceptance [6]. 

Phase 5 - Integration and Scaling (Weeks 31-40): User 

interaction design focuses on seamless integration with existing 

workflows. This phase deploys the conversational interface, 

implements embedded widgets for priority BI platforms, 

establishes API access for programmatic consumers, and 

conducts user training across organizational roles. Scaling 

activities extend coverage to additional source systems and data 

domains based on prioritized backlog. Success criteria include 

production deployment with defined user adoption metrics and 

established operational procedures [6]. 

4.5 Implementation Summary 
Table 2 summarizes the implementation components across 

infrastructure, standardization, annotation, and deployment 

dimensions with specific technologies, configurations, and 

success metrics. 

Table 3: Application Domains for Explainable Lineage 

Agents Showing Challenges, Solutions, and Measurable 

Outcomes [7, 8] 

Component Key Technologies Success Metrics 

Infrastructure 

Apache Kafka 3.x, 

Scala/gRPC, 

Neo4j/JanusGraph

, GPT-4/Llama 3 

<1s ingestion latency, <3s 

query response, <5s 

explanation generation 

Metadata 

Standardizati

on 

Apache Avro, 

W3C SKOS, 

DCAT Extension 

100% source coverage, 

80% glossary coverage, 

zero breaking changes 

Annotation 

Framework 

Sentence 

Transformers, 

Three-tier 

Classification, 

Rule Engine 

95% classification 

accuracy, 85% auto-

annotation rate 

Deployment 

Phases 

5 phases over 40 

weeks: Foundation 

→ Context → 

Graph → 

Explanation → 

Integration 

80% user satisfaction, 

defined adoption metrics 

achieved 

 

These use cases demonstrate that explainable data lineage 

agents deliver value across organizational functions by 

translating technical metadata into actionable insights tailored 

to each stakeholder's context and objectives. The consistent 

architecture serves diverse needs through persona adaptation 

while maintaining a single source of truth for lineage 

information. 

5. USE CASE SCENARIOS  
This section presents three primary application domains where 

explainable data lineage agents deliver significant 

organizational value. Each scenario describes specific 

challenges, implementation approaches, and measurable 

outcomes based on typical enterprise deployments. 

5.1 Compliance and Audit 
Explainable data lineage agents serve as powerful tools for 

regulatory compliance and audit facilitation in highly regulated 

industries. Financial institutions facing Basel III capital 

requirements, healthcare organizations subject to HIPAA 

privacy rules, and multinational corporations navigating GDPR 

obligations leverage these systems to demonstrate 

comprehensive understanding of data flows through complex 

environments [7]. 

5.1.1 Regulatory Reporting Automation 

Traditional regulatory reporting requires manual 

documentation of data sources, transformations, and validation 

logic for each submitted metric. Explainable lineage agents 

automate this documentation by generating audit-ready 

narratives that trace reported values to source systems. For 

Basel III liquidity coverage ratio (LCR) reporting, agents 

explain how high-quality liquid assets are aggregated from 

treasury systems, how net cash outflows are calculated from 

customer deposit databases, and how stress scenario 

adjustments are applied. These explanations include 

timestamps, data freshness indicators, and quality scores that 

regulators increasingly require for submission validation [7]. 

5.1.2 Privacy Regulation Compliance 

For personal data handling under privacy regulations like 

GDPR, explainable agents automatically identify sensitive data 

flows and explain the rationale behind masking, 

anonymization, and retention decisions in business-relevant 

terms. When processing a Data Subject Access Request 

(DSAR), the agent traces an individual's personal information 

across CRM systems, transaction databases, marketing 

platforms, and analytics warehouses. Rather than requiring 

weeks of manual investigation, the agent generates a 

comprehensive report within minutes explaining where 

personal data resides, how it was collected (consent basis), 

what transformations were applied (pseudonymization, 

aggregation), and which third parties received exports [7]. 

5.1.3 Audit Trail Generation 

Audit trail generation capabilities document the complete 

lifecycle of regulated data elements, capturing not just 

transformation details but the business context and purpose 

behind each step. During external audit preparation, 

compliance teams query the lineage agent with questions such 

as "Explain all transformations applied to customer financial 

data used in quarterly SEC filings." The agent responds with a 

structured narrative covering source system extractions, 

cleansing rules applied, aggregation logic, manual adjustment 

workflows, and final report generation, each step annotated 

with authorization records and change ticket references. This 

approach shifts audit preparation from reactive documentation 

gathering to continuous governance with readily available 

explanations that satisfy both internal and external auditors [7]. 

5.1.4 Compliance Scenario Example 

Scenario: A European bank receives a GDPR Article 15 access 
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request from a customer asking for all personal data held and 

its processing purposes. 

Traditional Approach: 

• Compliance team manually queries 12+ systems over 

2-3 weeks 

• IT support required to interpret technical data stores 

• Risk of incomplete response and regulatory penalty 

• Lineage Agent Approach: 

• Agent query: "Trace all personal data for customer 

ID C-29847 and explain processing purposes" 

• Response generated in 8 minutes covering 14 

systems 

• Narrative explains: source collection points (mobile 

app registration, branch visit), processing purposes 

(account servicing, fraud detection, marketing with 

consent), recipients (payment processor, credit 

bureau), and retention periods 

• Compliance officer reviews and approves response 

within 1 hour 

5.2 Data Engineering and Quality 
For data engineering teams, explainable lineage agents 

transform troubleshooting and quality management processes 

across complex data ecosystems. Traditional debugging 

approaches often involve fragmented analysis across multiple 

systems with limited visibility into cross-component 

dependencies, resulting in extended mean-time-to-resolution 

(MTTR) and recurring issues [7]. 

5.2.1 Root Cause Analysis 

When data quality issues surface in downstream reports, 

engineers typically spend 60-70% of debugging time simply 

locating the failure point across distributed pipelines. Lineage 

agents accelerate this process by providing natural language 

explanations of data flow paths with quality indicators at each 

stage. An engineer investigating revenue discrepancies queries: 

"Why does the daily_revenue metric show NULL values for the 

APAC region on March 15?" The agent responds with a causal 

explanation: "The APAC revenue NULL values originated 

from a schema change in the sales_transactions table deployed 

at 02:15 UTC. The new column 'currency_code' replaced 

'currency' but the downstream currency_conversion 

transformation references the deprecated column name, 

causing NULL propagation through revenue_by_region 

aggregation" [7]. 

5.2.2 Impact Assessment 

Beyond reactive troubleshooting, lineage agents enable 

proactive quality management by explaining potential impacts 

of proposed changes before implementation. During schema 

evolution, engineers query: "What would be affected if I add a 

NOT NULL constraint to customer.email_verified?" The agent 

analyzes downstream dependencies and responds: "This 

change impacts 23 downstream tables and 7 BI dashboards. 

Critical impacts include: (1) the customer_360 pipeline will fail 

for 12,847 records currently containing NULL values, (2) the 

marketing_qualified_leads report will exclude approximately 

8% of records, and (3) the compliance_audit_trail requires 

modification as email_verified is used in consent validation 

logic." This proactive analysis prevents production incidents 

and enables informed design decisions [7]. 

 

5.2.3 Change Management Integration 

Change management workflows benefit significantly from 

lineage explanations that facilitate communication between 

technical and business stakeholders. When a data engineer 

submits a pull request modifying transformation logic, the 

lineage agent automatically generates an impact summary in 

both technical and business terms. Technical reviewers see 

affected tables, column mappings, and query dependencies. 

Business reviewers see affected reports, metrics, and data 

products with plain-language descriptions of how calculations 

will change. This dual-perspective documentation reduces 

approval cycles and ensures stakeholders understand 

implications before deployment [7]. 

5.2.4 Engineering Scenario Example 

Scenario: A retail company's inventory dashboard shows 

negative stock values for 200+ products. 

Investigation with Lineage Agent: 

• Query: "Explain the data flow for inventory_levels 

and identify potential causes of negative values" 

• Agent traces path: POS_transactions → 

inventory_adjustments → warehouse_sync → 

inventory_levels 

• Explanation reveals: "Negative values occur when 

warehouse_sync processes returns before 

POS_transactions records the original sale. The 

inventory_adjustments transformation subtracts 

return quantities without validating corresponding 

sale records exist. This timing issue affects 3.2% of 

high-velocity SKUs." 

• Recommended fix identified in 45 minutes vs. typical 

6-8 hour investigation 

5.3 Business Intelligence 
Business intelligence stakeholders leverage explainable lineage 

agents to establish appropriate trust in analytics and understand 

metric derivation without technical expertise. Executive 

decision-makers often struggle to evaluate data reliability, 

either placing excessive confidence in flawed metrics or 

discounting valid insights due to uncertainty about origins [8]. 

5.3.1 Metric Provenance Explanation 

Lineage explanations address trust calibration challenges by 

providing business-friendly narratives that connect dashboard 

metrics to source systems through understandable 

transformation descriptions. When a CFO questions the 

quarterly revenue figure displayed on the executive dashboard, 

the agent explains: "Quarterly revenue of $47.3M aggregates 

sales from three channels: e-commerce ($28.1M from Shopify 

order database, updated hourly), retail stores ($15.8M from 

POS system nightly batch), and wholesale ($3.4M from SAP 

invoicing, 48-hour delay). The figure excludes pending orders 

and applies the corporate FX rate locked on the first business 

day of each month. Data completeness is 99.7% with 0.3% 

estimated from historical patterns due to delayed retail uploads" 

[8]. 

5.3.2 Discrepancy Resolution 

When conflicting metrics arise across different reports or 

dashboards, lineage explanations help resolve discrepancies by 

identifying divergent calculation methods or source definitions. 

An analyst notices that marketing reports show 50,000 monthly 

active users while product reports show 62,000. Querying the 

lineage agent reveals: "Marketing's monthly_active_users 

counts unique visitors with at least one page view, excluding 
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internal IP ranges and bot traffic. Product's 

monthly_active_users counts unique authenticated sessions 

with at least one feature interaction, including mobile app and 

web. The 12,000 difference primarily reflects: (1) 8,400 

mobile-only users not tracked by marketing's web analytics, (2) 

2,100 users filtered as bots by marketing, and (3) 1,500 internal 

users excluded by marketing" [8]. 

5.3.3 Data Quality Transparency 

Risk interpretation capabilities transform governance by 

explaining data dependencies and quality characteristics in 

business terms. Dashboard widgets enhanced with lineage 

integration display quality indicators alongside metrics. 

Hovering over a customer satisfaction score reveals: "This NPS 

score (72) derives from survey responses collected over the past 

30 days. Response rate: 12% (below 15% target). Sample bias 

warning: mobile app users are over-represented at 78% vs. 45% 

of customer base. Last data refresh: 2 hours ago. Confidence 

level: Medium due to sample size and bias factors." This 

transparency enables informed interpretation rather than blind 

trust in displayed values [8]. 

5.3.4 Business Intelligence Scenario Example 

Scenario: Executive team questions why two dashboards show 

different customer counts. 

Resolution with Lineage Agent: 

Query: "Compare customer count definitions between Sales 

Dashboard and Finance Dashboard" 

Agent explanation: "Sales Dashboard shows 145,000 'active 

customers' defined as accounts with purchase activity in the last 

12 months. Finance Dashboard shows 198,000 'total customers' 

defined as all accounts with lifetime value > $0 regardless of 

recency. The 53,000 difference represents dormant accounts 

(no purchase in 12+ months) that Finance includes for revenue 

recognition purposes but Sales excludes for pipeline 

forecasting." 

Resolution: Dashboards now include definition tooltips 

generated from lineage metadata 

5.4 Use Case Summary 
Table 3 summarizes the primary application domains, specific 

challenges addressed, solution capabilities provided by 

explainable lineage agents, and measurable outcomes observed 

in enterprise implementations. 

Table 3: Application Domains for Explainable Lineage 

Agents [7, 8] 

Domain Challenge Agent Solution 

Compliance 

& Audit 

Manual 

documentation, 

DSAR delays, 

incomplete audit 

trailsAutomated 

narratives with 

source tracing 

(85% faster prep, 

DSAR: 3 weeks 

→ 4 hours) 

Manual documentation, 

DSAR delays, incomplete 

audit trailsAutomated 

narratives with source 

tracing (85% faster prep, 

DSAR: 3 weeks → 4 

hours) 

Data 

Engineering 

Extended MTTR, 

unassessed 

changes, 

communication 

gapsCausal 

explanations with 

impact analysis 

Extended MTTR, 

unassessed changes, 

communication 

gapsCausal explanations 

with impact analysis 

(MTTR: 6 hrs → 45 min, 

60% fewer incidents) 

(MTTR: 6 hrs → 

45 min, 60% 

fewer incidents) 

Business 

Intelligence 

Unreliable 

metrics, 

conflicting reports, 

analytics 

opacityProvenance 

narratives with 

quality indicators 

(3x engagement, 

90% self-resolved 

conflicts) 

Unreliable metrics, 

conflicting reports, 

analytics 

opacityProvenance 

narratives with quality 

indicators (3x 

engagement, 90% self-

resolved conflicts) 

 

 

These use cases demonstrate that explainable data lineage 

agents deliver value across organizational functions by 

translating technical metadata into actionable insights tailored 

to each stakeholder's context and objectives. The consistent 

architecture serves diverse needs through persona adaptation 

while maintaining a single source of truth for lineage 

information. 

6. EVALUATION FRAMEWORK 
Evaluating explainable lineage agents requires a multifaceted 

framework addressing both technical performance and human 

comprehension. This section details the evaluation 

methodology, experimental setup, datasets, metrics, and 

benchmarking approaches used to assess system effectiveness 

across diverse enterprise scenarios. 

6.1 Evaluation Methodology 
The evaluation methodology employs a mixed-methods 

approach combining quantitative performance measurement 

with qualitative human assessment. This dual approach 

recognizes that explainable lineage agents must satisfy both 

technical requirements (accuracy, latency, scalability) and 

human-centric requirements (clarity, relevance, usefulness) to 

deliver organizational value [9]. 

6.1.1 Quantitative Evaluation Protocol 

Quantitative evaluation incorporates lineage query simulation 

across diverse scenarios, from simple path queries to complex 

multi-hop explanations that mirror actual enterprise usage 

patterns. The simulation framework generates parameterized 

queries across five complexity levels: single-hop column 

lineage (Level 1), multi-hop table lineage spanning 2-5 

transformations (Level 2), cross-system lineage involving 3+ 

heterogeneous platforms (Level 3), temporal lineage tracking 

schema evolution over time (Level 4), and impact analysis 

queries affecting 50+ downstream assets (Level 5). Each 

complexity level includes 200 test queries distributed across the 

three primary use case domains (compliance, engineering, 

business intelligence), yielding 3,000 total test queries per 

evaluation cycle [9]. 

Performance measurement captures component-level and end-

to-end metrics at millisecond granularity. Instrumentation 

points are established at layer boundaries: ingestion receipt 

timestamp, parsing completion, annotation completion, graph 

query execution, LLM prompt submission, LLM response 

receipt, and final response delivery. This granular measurement 

enables identification of performance bottlenecks and 

optimization opportunities. Load testing employs Apache 

JMeter to simulate concurrent user scenarios ranging from 10 

to 500 simultaneous users with realistic query distributions 

derived from production usage analytics [9]. 
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6.1.2 Qualitative Evaluation Protocol 

Qualitative assessment employs human evaluator panels 

through structured protocols involving participants from 

technical, business, and governance roles. The evaluation panel 

comprises 45 participants distributed across five organizational 

roles: data engineers (12 participants), data analysts (10 

participants), business executives (8 participants), compliance 

officers (8 participants), and data stewards (7 participants). 

Participants are recruited from three partner organizations 

spanning financial services, healthcare, and retail sectors to 

ensure domain diversity [9]. 

Each evaluator applies standardized rubrics to assess 

explanation quality across multiple dimensions using a 7-point 

Likert scale (1=Strongly Disagree to 7=Strongly Agree). The 

rubric addresses six quality dimensions: factual accuracy 

(explanation correctly represents actual data flows), 

completeness (explanation includes all relevant information), 

clarity (explanation is easy to understand), relevance 

(explanation addresses the user's actual question), actionability 

(explanation enables informed decision-making), and 

confidence calibration (explanation appropriately conveys 

certainty levels). Inter-rater reliability is assessed using 

Krippendorff's alpha, with target threshold α ≥ 0.80 indicating 

acceptable agreement [9]. 

6.1.3 Comparative Benchmarking Protocol 

Comparative benchmarking establishes objective baselines by 

measuring lineage agents against traditional approaches using 

identical underlying data. Three comparison baselines are 

established: traditional lineage tools (Apache Atlas, Collibra), 

metadata catalog systems (Alation, DataHub), and manual 

documentation processes (wiki-based documentation, 

spreadsheet tracking). Each baseline receives identical test 

queries, with responses evaluated using the same quantitative 

metrics and qualitative rubrics. Statistical significance is 

assessed using paired t-tests with Bonferroni correction for 

multiple comparisons, requiring p < 0.01 for reported 

differences [9]. 

6.2 Experimental Setup 
6.2.1 Test Environment Configuration 

The evaluation environment replicates enterprise-scale 

deployment conditions across three configuration tiers. The 

development tier employs a single-node deployment (32 vCPU, 

128GB RAM, 1TB SSD) for baseline functional testing. The 

staging tier employs a clustered deployment (3 application 

nodes, 3 Neo4j core servers, 2 Redis nodes) for performance 

characterization. The production-equivalent tier employs full 

high-availability configuration (5 application nodes with auto-

scaling, 5 Neo4j core servers plus 3 read replicas, Redis cluster 

with 6 nodes) for scalability assessment. All tiers utilize 

identical software versions and configuration parameters to 

ensure result comparability [9]. 

6.2.2 Evaluation Datasets 

Evaluation employs three datasets representing different 

enterprise contexts, complexity levels, and data domains. 

Dataset selection prioritizes diversity in lineage graph 

characteristics, transformation complexity, and regulatory 

applicability. 

Dataset A - Financial Services (Synthetic): Generated using 

the TPC-DI (Data Integration) benchmark schema extended 

with financial services domain attributes. Contains 2.3 million 

lineage nodes spanning 847 tables, 12,400 columns, and 3,200 

transformation jobs. Includes regulatory metadata for SOX, 

Basel III, and GDPR compliance scenarios. Transformation 

complexity ranges from simple column mappings to multi-step 

aggregations with conditional logic. Graph density: 4.7 edges 

per node average [9]. 

Dataset B - Healthcare Analytics (Anonymized 

Production): Derived from anonymized metadata exports 

from a regional healthcare network with IRB approval. 

Contains 890,000 lineage nodes spanning 312 clinical and 

administrative systems. Includes HIPAA-relevant sensitivity 

classifications and data use agreements. Features complex ETL 

patterns typical of healthcare data warehouses including slowly 

changing dimensions and late-arriving facts. Graph density: 6.2 

edges per node average [9]. 

Dataset C - Retail Operations (Hybrid): Combines synthetic 

product and sales data structures with anonymized 

transformation patterns from retail implementations. Contains 

1.5 million lineage nodes spanning e-commerce platforms, 

point-of-sale systems, inventory management, and customer 

analytics. Includes CCPA privacy classifications and multi-

currency transformation logic. Features real-time streaming 

lineage alongside batch processing patterns. Graph density: 5.1 

edges per node average [9]. 

6.3 Evaluation Metrics 
Key metrics balance technical performance with human 

comprehension factors across four primary dimensions. 

6.3.1 Explanation Clarity Metrics 

Explanation clarity is measured through linguistic analysis 

examining readability characteristics and concept density, 

providing objective comparison between explanations targeted 

at different personas. Automated metrics include: 

• Flesch-Kincaid Grade Level: Target ranges by 

persona: Executive (8-10), Compliance (10-12), 

Analyst (10-12), Engineer (12-14) 

• Concept Density: Technical concepts per 100 

words, measured using domain-specific terminology 

dictionaries. Target ranges: Executive (<5), 

Compliance (5-10), Engineer (10-20) 

• Sentence Complexity: Average clause count per 

sentence. Target: ≤2.5 for executive personas, ≤3.5 

for technical personas 

• Coherence Score: Semantic similarity between 

adjacent sentences using sentence embeddings, 

measuring logical flow. Target: ≥0.65 cosine 

similarity [9] 

6.3.2 Technical Accuracy Metrics 

Technical accuracy employs verification frameworks that 

assess factual correctness against ground truth, consistency 

across related explanations, and expert validation. 

• Path Accuracy: Percentage of lineage paths in 

explanation that match ground truth graph traversal. 

Target: ≥98% 

• Transformation Fidelity: Percentage of 

transformation descriptions that accurately reflect 

actual logic. Assessed through expert review and 

automated parsing comparison. Target: ≥95% 

• Consistency Score: Agreement between 

explanations for semantically equivalent queries. 

Measured using 50 query pairs with expected 

identical responses. Target: ≥90% semantic 

similarity 

• Hallucination Rate: Percentage of explanations 

containing fabricated entities, relationships, or 

transformation logic not present in source metadata. 

Target: <2% [9] 
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6.3.3 Persona Alignment Metrics 

Persona alignment metrics evaluate how effectively 

explanations adapt to different user roles through both 

automated classification and human assessment. 

• Terminology Appropriateness: Classifier-assessed 

alignment between explanation vocabulary and 

persona-specific terminology dictionaries. Target: 

≥85% vocabulary match 

• Detail Level Accuracy: Human-assessed 

appropriateness of technical depth for target persona 

using 5-point scale. Target: ≥4.0 average rating 

• Context Relevance: Human-assessed inclusion of 

persona-relevant context (regulatory for compliance, 

business impact for executives, technical 

specifications for engineers). Target: ≥4.2 average 

rating 

• Persona Classification Accuracy: Ability of blind 

evaluators to correctly identify target persona from 

explanation text alone. Target: ≥80% classification 

accuracy [9] 

6.3.4 System Performance Metrics 

Response latency measurements analyze component-level and 

end-to-end performance across varying conditions. 

• End-to-End Latency: Time from query submission 

to complete response delivery. Targets by 

complexity: Level 1 (<1s), Level 2 (<2s), Level 3 

(<4s), Level 4 (<6s), Level 5 (<10s) 

• Component Latency Distribution: Breakdown of 

processing time across graph traversal, context 

retrieval, LLM generation, and post-processing 

• Throughput: Queries processed per second under 

concurrent load. Target: ≥50 queries/second at 100 

concurrent users 

• Scalability Factor: Performance degradation rate as 

load increases. Target: <20% latency increase per 2x 

load multiplier 

• Resource Utilization: CPU, memory, and GPU 

utilization under load. Target: <80% sustained 

utilization at peak load [9] 

6.4 Benchmark Comparisons 
Benchmark comparisons reveal significant differences between 

explainable agents and traditional approaches across multiple 

evaluation dimensions. 

6.4.1 Comparison with Traditional Lineage Tools 

Conventional lineage tools (Apache Atlas, Collibra Lineage) 

excel at capturing structural relationships but show limitations 

in contextual enrichment. Traditional tools achieve comparable 

path accuracy (96-98%) but score significantly lower on clarity 

metrics (Flesch-Kincaid grade 14-16 vs. persona-appropriate 

targets) and completeness (technical-only without business 

context). Business users demonstrate the most dramatic 

improvements when using explainable agents, with task 

completion rates improving from 34% to 87% for compliance 

reporting scenarios and from 28% to 79% for metric 

provenance queries [9]. 

6.4.2 Comparison with Metadata Catalogs 

Comparisons with metadata catalogs (Alation, DataHub) 

highlight superior performance in resolving ambiguous 

business terms to technical implementations and maintaining 

semantic consistency during schema changes. Catalogs provide 

rich contextual information but lack narrative generation 

capabilities, requiring users to synthesize information across 

multiple interface screens. Time-to-insight metrics show 3.2x 

improvement for explainable agents (average 4.2 minutes vs. 

13.5 minutes for equivalent information gathering from catalog 

interfaces). Semantic consistency scores during schema 

evolution scenarios show 94% consistency for explainable 

agents versus 67% for catalog-based approaches requiring 

manual documentation updates [9]. 

6.4.3 Comparison with Manual Documentation 

The most substantial differences appear against manual 

documentation processes (wikis, spreadsheets, email-based 

explanations). Explainable agents demonstrate superior 

efficiency (95% reduction in documentation time), consistency 

(inter-document variance reduced from 45% to 8%), and 

completeness (coverage of lineage elements improved from 

62% to 97%). Manual documentation shows particular 

weakness in maintaining accuracy during system changes, with 

documentation drift averaging 34% deviation from actual 

lineage within 6 months of creation. Explainable agents 

maintain real-time accuracy by generating explanations from 

live metadata. These improvements prove particularly valuable 

for non-technical stakeholders who traditionally struggle with 

lineage understanding due to inconsistent terminology and 

incomplete documentation [9]. 

6.5 Evaluation Summary 
Figure 2 illustrates the evaluation framework architecture 

showing the relationship between test datasets, evaluation 

protocols, metric collection, and benchmark comparisons. 

 

Fig 2: Evaluation Framework Architecture Diagram [9, 

10] 

7. RESULTS AND DISCUSSION 
Comprehensive evaluation reveals significant strengths and 

opportunities for improvement across multiple dimensions of 

explainable lineage agents. This section presents quantitative 

findings from the evaluation framework described in Section 6, 

analyzes performance across datasets and user personas, 

identifies limitations, and proposes mitigation strategies. 

7.1 Explanation Quality Results 
7.1.1 Clarity Metrics 

Explanation clarity analysis demonstrates strong performance 

across different stakeholder groups, with results varying by 

persona type as designed. Executive-targeted explanations 

achieved a mean Flesch-Kincaid grade level of 9.2 (σ=1.1), 

within the target range of 8-10, indicating appropriate 

accessibility for non-technical audiences. Engineer-targeted 

explanations averaged grade level 12.8 (σ=1.4), appropriately 

incorporating technical terminology. Compliance officer 

explanations achieved grade level 11.1 (σ=1.2), balancing 

regulatory precision with readability [10]. 

Concept density measurements confirmed effective persona 

adaptation. Executive explanations contained 4.2 technical 

concepts per 100 words (target: <5), while engineer 

explanations contained 16.8 concepts per 100 words (target: 

10-20). Coherence scores measuring logical flow between 

sentences averaged 0.72 (σ=0.08) across all personas, 

exceeding the 0.65 threshold, indicating well-structured 

explanations [10]. 
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7.1.2 Accuracy Metrics 

Technical accuracy evaluation against ground truth lineage 

graphs yielded strong results. Path accuracy, measuring correct 

identification of lineage relationships, achieved 97.3% across 

all test queries (n=3,000), with performance consistent across 

complexity levels 1-3 (98.1%) and slightly reduced for levels 

4-5 (95.8%) involving temporal lineage and large-scale impact 

analysis. Transformation fidelity, assessed through expert 

review of 500 randomly sampled explanations, achieved 94.2% 

accuracy in correctly describing transformation logic [10]. 

Hallucination rate, a critical metric for LLM-based systems, 

measured 1.8% across all explanations, below the 2% target 

threshold. Hallucinations occurred most frequently in 

explanations involving legacy systems with sparse metadata 

(4.2% rate) and proprietary transformation functions (3.1% 

rate). Consistency scores between semantically equivalent 

queries achieved 91.4% similarity, indicating reliable 

explanation generation [10]. 

7.1.3 Results by Dataset 

Performance varied across the three evaluation datasets, 

reflecting differences in metadata completeness and 

transformation complexity: 

• Financial Services Dataset: Highest overall scores 

with 98.1% path accuracy and 0.74 coherence, 

attributed to comprehensive metadata from 

regulatory documentation requirements 

• Healthcare Dataset: Strong accuracy (96.8%) with 

moderate clarity scores, reflecting complex clinical 

terminology requiring careful adaptation 

• Retail Dataset: Lowest path accuracy (96.2%) due 

to real-time streaming lineage complexity, but 

highest user satisfaction scores (4.5/5.0) attributed to 

practical relevance of explanations 

7.2 Persona Alignment Results 
Persona alignment evaluation confirmed effective adaptation 

across organizational roles. Terminology appropriateness, 

measured by classifier analysis of vocabulary alignment, 

achieved 87.2% for executive personas, 89.1% for engineer 

personas, and 84.6% for compliance personas. The lower 

compliance score reflects ongoing terminology standardization 

challenges across regulatory frameworks [10]. 

Human evaluator ratings on the 7-point Likert scale produced 

the following results across evaluation dimensions: 

• Factual Accuracy: Mean 6.1 (σ=0.8), with 

engineers rating highest (6.4) and executives lowest 

(5.8) 

• Completeness: Mean 5.7 (σ=1.1), with compliance 

officers rating lowest (5.3) due to expectations for 

exhaustive regulatory coverage 

• Clarity: Mean 6.3 (σ=0.7), consistent across all 

persona groups 

• Relevance: Mean 6.0 (σ=0.9), with executives rating 

highest (6.4) due to effective business context 

integration 

• Actionability: Mean 5.9 (σ=1.0), with engineers 

rating highest (6.2) due to technical specificity 

• Confidence Calibration: Mean 5.4 (σ=1.2), 

identified as primary improvement area across all 

groups 

Blind persona classification accuracy, where evaluators 

identified target persona from explanation text alone, achieved 

83.2%, exceeding the 80% target and confirming distinctive 

persona characteristics in generated explanations [10]. 

7.3 System Performance Results 
7.3.1 Latency Analysis 

Response time analysis across query complexity levels 

demonstrated acceptable performance within defined 

thresholds: 

• Level 1 (single-hop): Mean 0.8s (p90: 1.2s), target 

<1s achieved for 89% of queries 

• Level 2 (multi-hop 2-5): Mean 1.6s (p90: 2.4s), 

target <2s achieved for 84% of queries 

• Level 3 (cross-system): Mean 3.2s (p90: 4.8s), target 

<4s achieved for 78% of queries 

• Level 4 (temporal): Mean 4.9s (p90: 7.1s), target 

<6s achieved for 72% of queries 

• Level 5 (large impact): Mean 7.8s (p90: 11.2s), 

target <10s achieved for 68% of queries 

Component-level analysis identified LLM explanation 

generation as the primary latency contributor, accounting for 

58% of total processing time on average. Graph traversal 

contributed 24%, context retrieval 12%, and post-processing 

6%. Caching mechanisms reduced repeat query latency by 73% 

on average [10]. 

7.3.2 Scalability Analysis 

Throughput testing demonstrated 62 queries per second at 100 

concurrent users, exceeding the 50 queries/second target. 

Scalability evaluation revealed: 

• 10 users: 78 queries/second, 0.9s mean latency 

• 50 users: 71 queries/second, 1.4s mean latency 

• 100 users: 62 queries/second, 2.1s mean latency 

• 200 users: 48 queries/second, 3.4s mean latency 

• 500 users: 31 queries/second, 5.8s mean latency 

Performance degradation followed a sub-linear pattern up to 

200 users (18% degradation per 2x load), within acceptable 

thresholds. Beyond 200 users, degradation accelerated (35% 

per 2x load), indicating the scaling boundary for the tested 

configuration. Resource utilization peaked at 76% CPU, 82% 

memory, and 71% GPU at 500 concurrent users [10]. 

7.4 Benchmark Comparison Results 
Comparative analysis against baseline systems revealed 

significant advantages for explainable lineage agents across 

most dimensions: 

vs. Traditional Lineage Tools (Apache Atlas, Collibra): 

• Task completion rate for compliance reporting: 87% 

vs. 34% (p<0.001) 

• Time-to-insight for metric provenance: 4.2 min vs. 

18.6 min (p<0.001) 

• User satisfaction (non-technical users): 4.3/5 vs. 

2.1/5 (p<0.001) 

• Path accuracy: comparable (97.3% vs. 96.8%, 

p=0.42) 

vs. Metadata Catalogs (Alation, DataHub): 

• Time-to-insight: 3.2x improvement (4.2 min vs. 13.5 

min, p<0.001) 

• Semantic consistency during schema changes: 94% 

vs. 67% (p<0.001) 

• Cross-system lineage understanding: 4.1/5 vs. 2.8/5 

(p<0.001) 

vs. Manual Documentation: 

• Documentation time: 95% reduction (p<0.001) 

• Inter-document consistency: 92% vs. 55% (p<0.001) 

https://jaaionline.org/


Journal of Advanced Artificial Intelligence 

Volume 2 – No.3, December 2025 

27 

• Lineage coverage: 97% vs. 62% (p<0.001) 

• Accuracy after 6 months: 96% vs. 66% (p<0.001) 

7.5 Limitations and Challenges 
Despite promising results, several key limitations require 

attention for effective implementation. 

7.5.1 Metadata Sparsity 

Metadata sparsity presents a fundamental challenge, as 

explanation quality degrades significantly when source 

metadata lacks adequate business context or transformation 

rationale. Analysis across datasets revealed a strong correlation 

(r=0.78) between metadata completeness scores and 

explanation quality ratings. Organizational environments with 

limited documentation practices or legacy systems exhibited up 

to 40% lower explanation quality scores. Systems with 

metadata completeness below 60% showed hallucination rates 

of 4.2% compared to 1.1% for systems above 80% 

completeness [10]. 

7.5.2 Transformation Ambiguity 

Ambiguous transformation logic poses significant 

interpretation challenges, especially in complex multi-step 

transformations or pipelines utilizing proprietary functions. 

Evaluation identified three primary ambiguity sources: 

undocumented custom functions (affecting 12% of 

transformations), implicit type conversions (8%), and 

conditional logic with multiple execution paths (15%). When 

transformation intent remains unclear from available metadata, 

explanation accuracy dropped to 82% compared to 96% for 

well-documented transformations [10]. 

7.5.3 LLM Hallucination Risks 

LLM hallucination risks require careful management, 

particularly when operating with sparse metadata. Analysis 

categorized hallucinations into three types: entity fabrication 

(inventing non-existent tables or columns, 0.6% of 

explanations), relationship fabrication (incorrect lineage 

connections, 0.8%), and rationale fabrication (plausible but 

incorrect business justifications, 0.4%). Hallucination rates 

increased 2.3x when metadata completeness fell below 50%, 

highlighting the critical dependency on upstream data quality 

[10]. 

7.5.4 Trust Calibration 

Trust calibration issues emerge when explanations fail to 

appropriately convey confidence levels. User studies revealed 

that 34% of participants placed excessive confidence in 

explanations derived from incomplete metadata, while 28% 

expressed unwarranted skepticism toward high-quality 

explanations. The confidence calibration dimension received 

the lowest human evaluator ratings (mean 5.4/7), indicating 

significant room for improvement in communicating 

explanation reliability [10]. 

7.6 Mitigation Strategies 
Addressing these limitations requires integrated technical and 

organizational approaches. 

7.6.1 Human-in-the-Loop Review 

Human-in-the-loop review processes provide essential quality 

control for high-risk domains. Implementing structured review 

workflows where domain experts validate explanations for 

critical data elements ensures accuracy while progressively 

improving model performance through feedback incorporation. 

Pilot implementations demonstrated 67% reduction in 

hallucination rates for reviewed domains after three feedback 

cycles. Review processes should target high-impact 

explanations (regulatory reporting, executive dashboards) 

rather than comprehensive review, optimizing expert time 

while managing risk [10]. 

7.6.2 Confidence Scoring 

Confidence scoring mechanisms enable appropriate trust 

calibration by explicitly communicating explanation reliability. 

The proposed multi-factor confidence score combines metadata 

completeness (40% weight), transformation clarity (30% 

weight), and model certainty (30% weight) into a normalized 

0-100 scale. User studies with confidence indicators showed 

45% improvement in trust calibration accuracy, with users 

appropriately adjusting reliance based on displayed confidence 

levels [10]. 

7.6.3 Domain-Specific Tuning 

Domain-specific prompt tuning significantly improves 

explanation quality for specialized domains. Customizing 

prompt templates based on industry terminology, regulatory 

requirements, and organization-specific context enhanced 

relevance and accuracy. Financial services domain tuning 

improved terminology appropriateness from 84% to 93%, 

while healthcare tuning reduced clinical term misuse by 71%. 

This approach constrains generation within domain-

appropriate boundaries while improving terminology 

alignment [10]. 

7.6.4 Progressive Metadata Enrichment 

Progressive metadata enrichment addresses the foundational 

challenge of metadata sparsity through targeted enhancement 

of critical lineage elements. Prioritization based on business 

impact and regulatory significance enables incremental 

improvement. Organizations implementing enrichment 

programs showed 23% improvement in explanation quality 

scores over 6 months, with the highest gains in previously 

undocumented legacy systems [10]. 

8. CONCLUSION 
Explainable data lineage AI agents represent a paradigm shift 

in organizational approaches to data governance and metadata 

management. By bridging the gap between technical 

implementations and business understanding, these systems 

transform static lineage artifacts into dynamic, context-aware 

narratives that address the specific needs of diverse 

stakeholders. The multi-component architecture progressively 

enriches raw lineage signals with business context, governance 

classifications, and persona-specific explanations, enabling 

both technical accuracy and human comprehensibility. 

Implementation requires thoughtful technology selection, 

metadata standardization, and phased deployment, yet delivers 

substantial benefits across multiple organizational dimensions. 

These benefits include enhanced cross-functional 

collaboration, streamlined regulatory compliance, improved 

operational efficiency, and increased trust in data assets. The 

architecture's modular design supports incremental adoption 

while integrating with existing enterprise systems through 

standardized interfaces. 

Future research directions include multilingual support 

expansion, real-time synthesis optimization, and open-source 

standardization efforts. Industry-specific adaptations will 

enhance relevance for specialized domains, while federated 

lineage capabilities will extend explanations across 

organizational boundaries. Integration with observability 

platforms presents opportunities for comprehensive data 

lifecycle management. These advancements collectively move 

toward more transparent, trustworthy, and accessible data 

ecosystems that democratize understanding while maintaining 

technical precision.
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