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ABSTRACT

Urban traffic congestion has emerged as one of the most
pressing challenges in today's metropolitan areas, directly
influencing economic productivity, environmental
sustainability, and the overall quality of life for urban residents.
With the continuous rise in vehicle numbers and the increasing
complexity of transportation networks, the ability to detect and
predict congestion with high accuracy has become critical for
effective traffic management and planning. Although machine
learning (ML) models have demonstrated considerable promise
in traffic prediction tasks, their performance often lacks
contextual depth when trained solely on temporal data, such as
timestamps or aggregated historical traffic patterns. This study
addresses this gap by investigating the integration of real-time
spatiotemporal data, incorporating both spatial features (road
location, number of lanes, geographic coordinates, and event
information) and temporal features (time-of-day, day-of-week,
etc.) to enhance the predictive accuracy of ML models for road
traffic congestion. Using a comprehensive dataset collected
from a metropolitan city, five different ML models were
implemented and evaluated, including Support Vector Machine
(SVM), Random Forest (RF), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), and a hybrid CNN-
RNN architecture. Each model was trained and tested under
two scenarios: temporal features only and integrated
spatiotemporal  features. The results indicate that
spatiotemporal integration substantially improves prediction
accuracy across most models, with ensemble-based methods
such as RF achieving near-perfect classification, and hybrid
deep learning architectures demonstrating significant gains
compared to their temporal-only counterparts. Statistical
significance testing further validated these improvements,
reinforcing the value of spatiotemporal enrichment for
predictive tasks. The findings underscore that spatial and
temporal contextualization of traffic data improves model
robustness and provides critical insights for developing
intelligent transportation systems (ITS) capable of delivering
real-time, adaptive congestion management solutions. This
research contributes to the growing knowledge in smart
mobility by offering empirical evidence that spatiotemporal
data integration is a key driver of accuracy and reliability in
ML-based traffic prediction.
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1. INTRODUCTION

Urban traffic congestion has emerged as one of modern
urbanization's most persistent and costly challenges. As
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populations migrate toward metropolitan centers and car
ownership rises, road networks become increasingly saturated.
In the United States alone, the Texas A&M Transportation
Institute (2024) reported that the average commuter lost 54
hours annually in congestion delays, with an associated fuel
wastage of more than 3.5 billion gallons [1]. Beyond the
economic implications, traffic congestion contributes
significantly to environmental degradation by increasing
carbon dioxide emissions and worsening air quality while
reducing the overall quality of life for residents. These
multifaceted consequences highlight the urgency of developing
advanced, data-driven solutions to improve real-time
congestion detection and prediction.

ITS has become a cornerstone of modern efforts to address
congestion. ITS integrates sensing technologies, wireless
communication, and advanced analytics to provide dynamic
traffic management capabilities. At the heart of many ITS
applications are predictive models capable of forecasting traffic
conditions minutes or hours ahead, allowing for preemptive
interventions such as adaptive signal control, dynamic tolling,
or real-time routing suggestions. Traditional statistical
forecasting approaches, such as autoregressive integrated
moving average (ARIMA) models or Kalman filters, initially
held promise but have proven inadequate in capturing urban
traffic systems' nonlinear, complex, and dynamic patterns.
Consequently, ML and deep learning (DL) approaches have
gained prominence for their ability to model nonlinear
relationships and deliver more accurate predictions.

While ML approaches, including SVM, RF, and neural
network architectures, have demonstrated strong predictive
capabilities, they often rely heavily on temporal data. These
temporal features, such as timestamps or aggregated historical
speed and volume data, provide a limited representation of
traffic dynamics. Temporal-only models may capture daily
rush-hour patterns but cannot account for the complex interplay
between traffic flow and spatial or contextual factors. For
instance, congestion along a downtown arterial may differ
significantly from congestion on a highway corridor, even at
the same time of day. Moreover, external contextual factors
such as weather conditions, special events, or accidents can
drastically alter traffic patterns in ways that purely temporal
features cannot capture.

Integrating spatiotemporal data addresses this limitation by
combining temporal features with spatial and contextual
attributes. Spatial features may include road geometry,
geographic coordinates, and number of lanes, while contextual
factors may include weather conditions, day-of-week, and local
events. By enriching ML models with these additional
dimensions, researchers aim to produce more accurate and
robust congestion predictions that align better with the complex
reality of urban traffic systems. Spatiotemporal integration is
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particularly valuable because traffic phenomena are inherently
spatiotemporal; congestion does not occur uniformly across
space and time but emerges in localized hotspots at specific
times. Thus, an ML model that accounts for these patterns is
better equipped to capture real-world traffic behavior.

Recent advances in deep learning architectures, such as CNNs
and RNNs, further motivate the exploration of spatiotemporal
integration. CNNs excel at extracting spatial dependencies
from data, while RNNs are well-suited to model sequential
temporal dependencies. Hybrid architectures that combine
CNN and RNN layers are designed to exploit both spatial and
temporal correlations, making them especially promising for
traffic congestion prediction. Ensemble methods such as RF
offer strong performance on structured, tabular datasets,
demonstrating resilience to noise and nonlinearity. Yet, few
studies systematically compare these approaches under
temporal-only versus spatiotemporal conditions, leaving an
important gap in the literature.

This research seeks to fill that gap by empirically evaluating
whether spatiotemporal integration improves the accuracy of
ML models for road traffic congestion prediction. Using a real-
world dataset collected from a metropolitan area, the study
examines five ML models: SVM, RF, CNN, RNN, and a hybrid
CNN-RNN. Each model is trained and tested under two feature
configurations: temporal-only and spatiotemporal.
Performance metrics include accuracy, precision, recall, and F1
score, while paired t-tests evaluate the statistical significance of
performance differences. The study provides robust evidence
on the benefits or limitations of spatiotemporal integration by
conducting descriptive and inferential analyses.

The results demonstrate that integrating spatiotemporal
features substantially improves predictive accuracy for most
models. RF achieved near-perfect accuracy with
spatiotemporal features, underscoring the power of ensemble
methods when applied to structured, context-rich datasets.
Hybrid CNN-RNN models also markedly improved, indicating
the benefits of combining spatial and temporal learning
capacities. By contrast, models such as SVM and RNN showed
limited improvements, suggesting that not all ML approaches
benefit equally from spatiotemporal integration.

The contributions of this research are threefold. First, it
provides an empirical comparison of multiple ML models
under temporal-only and spatiotemporal conditions, filling a
gap in current ITS literature. Second, it introduces statistical
significance testing (t-tests and effect size calculations) to
assess whether observed improvements are robust rather than
incidental. Third, it critically examines the implications of
exceptionally high performance achieved by RF with
spatiotemporal data, framing it as both a strength and a
limitation for practical deployment.

The remainder of this paper is organized as follows. Section 2
reviews the ML-based traffic congestion prediction literature,
highlighting prior work on temporal and spatiotemporal
approaches. Section 3 outlines the dataset, feature engineering
strategies, and modeling methodology. Section 4 presents the
results, while Section 5 discusses the implications of the
findings, with particular attention to the interpretability and
trustworthiness of near-perfect model performance. Section 6
outlines directions for future research, and Section 7 concludes
the paper.

2. LITERATURE REVIEW

Traffic congestion prediction using artificial intelligence (Al)
and ML has rapidly evolved in recent years, with growing
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emphasis on integrating spatiotemporal data. Unlike purely
temporal features, spatiotemporal inputs capture when and
where congestion occurs and contextual attributes such as road
type, weather, and special events. This holistic representation
of traffic dynamics has significantly improved predictive
accuracy across various ML architectures [2].

Spatiotemporal data provides a richer contextual understanding
of traffic conditions than temporal data alone. Zhou et al. [2]
demonstrated that models leveraging both spatial and temporal
information  outperformed  temporal-only  baselines,
particularly in highly dynamic urban environments where
congestion is shaped by road layout, land use, and human
activity patterns. Similarly, in a multi-city study, Wei et al. [3]
found that incorporating spatiotemporal data allowed models to
capture broader congestion determinants such as population
density, public transportation access, and road infrastructure
capacity. These findings underscore the importance of
spatiotemporal integration in building more generalizable
traffic prediction models across diverse urban settings.

The adoption of CNNs has become prevalent in traffic
prediction tasks due to their ability to detect spatial
correlations. Gao et al. [4] employed CNNs on traffic heatmaps
derived from GPS trajectory data, showing that CNNs could
accurately identify congestion hotspots and their spatial
diffusion patterns. Beyond spatial analysis, Long Short-Term
Memory (LSTM) networks have emerged as leading methods
for modeling sequential temporal dependencies. Christalin et
al. [5] illustrated how LSTMs learn daily and weekly traffic
cycles, effectively predicting recurring rush-hour peaks and
weekend traffic flows. Together, CNNs and LSTMs highlight
the dual importance of learning from spatial and temporal
signals in traffic data.

Research has recently focused on hybrid architectures that
integrate CNN and RNN components. These hybrid models
leverage CNNs to capture local spatial correlations and RNNs
to model long-term temporal dynamics. Slimani et al. [6]
demonstrated that a CNN-LSTM hybrid architecture
outperformed standalone CNN or LSTM models, achieving
higher accuracy and improved computational -efficiency.
Medina-Salgado et al. [7] extended this work by highlighting
interpretability challenges in hybrid models but acknowledged
that, when properly configured, such models offer superior
predictive performance across heterogeneous traffic datasets.
The hybridization trend reflects a broader movement in the
field, combining complementary architectures to better
represent the spatiotemporal complexity of traffic systems.

The performance of ML models is strongly influenced by
preprocessing and feature engineering. Shang et al. [8]
emphasized that careful handling of missing values,
normalization of continuous attributes, and appropriately
encoding categorical variables can dramatically improve model
stability. Li et al. [9] further demonstrated that enriching
datasets with contextual features such as weather conditions,
time of day, and event schedules improved prediction accuracy
across multiple ML frameworks. These findings are consistent
with the principle that traffic congestion is not purely a function
of flow and speed but is also shaped by external contextual
factors that vary dynamically.

The granularity of temporal aggregation plays an important role
in traffic prediction accuracy. Zhao et al. [10] showed that
using finer-grained intervals (e.g., 15 minutes) improved short-
term forecasting accuracy compared to hourly data, but the
computational burden increased substantially. Building on this,
Tang et al. [11] introduced a novel framework that explicitly
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aggregates and weights temporal features across multiple time
scales. Their model demonstrated significantly better
forecasting accuracy than conventional stacked LSTM
approaches, illustrating that capturing multi-scale temporal
dynamics is essential for robust traffic prediction.

As ML models become increasingly embedded in real-time
traffic management systems, issues of explainability and
trustworthiness are gaining attention. Javed et al. [12]
advocated for integrating explainable Al (XAI) methods in
traffic prediction to ensure that model outputs are interpretable
by practitioners and policymakers. Techniques such as SHAP
(Shapley Additive Explanations) can help identify which
spatiotemporal features (e.g., weather or location) drive
predictions, increasing confidence in Al-driven ITS
applications. Jiang et al. [13] further argued that explainability
is critical for aligning Al models with the broader goals of
smart city infrastructure, where transparency and
accountability are necessary for sustainable urban mobility
strategies.

The literature from 2021 to 2025 demonstrates significant
advances in spatiotemporal traffic prediction. CNNs, LSTMs,
and hybrid models dominate the deep learning space, while
ensemble methods such as RF deliver competitive performance
on structured tabular data. Preprocessing, temporal granularity,
and contextual enrichment are crucial for maximizing
predictive performance. However, several gaps remain:

L Few studies systematically compare multiple ML
architectures under identical temporal-only versus
spatiotemporal conditions.

IL. Statistical validation (e.g., paired t-tests, effect size
measures) is rarely performed, leaving open
questions about the robustness of reported
improvements.

111 The generalizability of models across cities and
datasets is still uncertain, as most studies evaluate
models within single metropolitan areas.

Iv. Explainability and ethical concerns remain
underexplored, despite increasing recognition of
their importance for deployment in ITS.

This study addresses the two listed gaps (I and II) by
comprehensively comparing five ML models under both
temporal-only and spatiotemporal conditions, while
incorporating statistical testing to validate performance
improvements.

3. METHODOLOGY

This study adopted a quantitative, quasi-experimental research
design to investigate the impact of integrating real-time
spatiotemporal data on the predictive accuracy of ML models
for road traffic congestion detection and prediction. The dataset
was obtained from open-source traffic APIs, focusing on major
road segments within the Kansas City metropolitan area. It
comprised various traffic-related features, including
timestamps, latitude and longitude coordinates, congestion
levels (low, medium, or high), average traffic speed, weather
conditions, and indicators for the day of the week. The data
were segmented into 15-minute and 30-minute intervals to
account for temporal variability, supporting fine- and coarse-
grained temporal learning analyses. Table 1 shows the dataset's
fields with descriptions:

Journal of Advanced Artificial Intelligence

Volume 2 — No.2, September2025

Table 1: Dataset's Fields and Brief Description

Field Description

Timestamp, Temporal indicators for traffic capture

Date (time and date of recording)

Latitude, Spatial coordinates for road segments

Longitude (point of road intersection)

Road ID Unique road segment identifier (e.g.,
R101)

Avg_Speed Measured or inferred average vehicle

(km/h) speed

Congestion_Lev

Classified as Low, Medium, or High

el
Weather

Day of Week

Weather conditions during recording

Temporal context for trend analysis
(Monday, Tuesday)

Event Local events affecting traffic (like
accidents, farmers' markets, etc.)
Structural road data relevant to
congestion (example: 2 lanes, 4 lanes)

No_of Lane

3.1 Data Collection and Preprocessing
Preprocessing steps were critical to preparing the dataset for
accurate model training and evaluation. To ensure continuity
and consistency, missing values were addressed using forward-
fill and linear interpolation techniques. Continuous variables
such as traffic speed and geographical coordinates were
normalized to bring them to a common scale, thereby
improving model convergence and performance. Categorical
variables, including weather conditions, were transformed
using one-hot encoding to facilitate model interpretability and
performance in classification tasks. Data were aggregated into
fixed intervals to enhance temporal learning and maintain
uniformity across time-series inputs. Congestion levels were
label-encoded to enable supervised classification tasks across
all models. Table 2 shows the data collection process from start
to finish:

Table 2: Data Collection Process

Step Description

Start The data collection process begins, and
objectives and workflow are established.

Structure Define the dataset schema, including
Dataset timestamp, road ID, coordinates, average
speed, and congestion level.

Enable APIs Activate required Google Cloud APIs
(e.g., Distance Matrix, Maps, Traffic

Layer) for data retrieval.

Generate API | Create and securely store an API key to

Key authenticate requests to Google Maps
APIs.

Assign Select intersections or road segments of

Intersections interest and assign unique road identifiers
(Road_ID).
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Call Distance | Collect travel time and distance between
Matrix API origins and destinations to estimate
dynamic traffic conditions.

Calculate Compute the average speed of vehicles
Average using collected travel time and distance
Speed values.

Apply Traffic | Retrieve real-time congestion levels (low,

Layer medium, high) using Google Maps Traffic
Layer.
Categorize Label traffic conditions into defined

Congestion congestion categories for supervised
learning.
Finish End of the data collection workflow,

producing a structured dataset ready for
preprocessing and analysis.

3.2 Model Development

Several ML and deep learning models were developed and
tested to compare their performance under temporal-only and
spatiotemporal enhanced datasets. The SVM model served as a
traditional baseline algorithm for linear classification. The RF
model, an ensemble learning method known for its robustness
to noise and overfitting, was evaluated on raw and enhanced
feature sets. CNN was designed to process spatially gridded
representations of traffic data, capturing local patterns in road
segment behavior. The RNN, specifically the LSTM variant,
was trained on sequential time series data to model temporal
dependencies. Additionally, a hybrid CNN-RNN model was
implemented by combining CNN-based feature extraction with
LSTM-based sequence modeling to simultaneously leverage
spatial and temporal dynamics. Table 3 shows all the models
with a brief description:

Table 3: ML Models Used in the Study

Model Description

Support Vector | A linear kernel SVM was used to
Machine classify congestion levels. Although
(SVM) computationally demanding on large
datasets, SVM was included as a
baseline due to its historical importance
in traffic prediction.

Random Forest | Configured with 80—100 decision trees,
(RF) each trained on bootstrapped samples.
RF was expected to perform well given
its ability to handle categorical and
continuous  attributes and capture
nonlinear feature interactions.

Convolutional Designed with one-dimensional

Neural convolutional layers to  process
Network sequential traffic data and detect spatial
(CNN) correlations in  feature  patterns.

Rectified Linear Unit (ReLU) activation
functions were used.
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Recurrent Employed to capture sequential
Neural temporal dependencies across traffic
Network observations. LSTM units help address
(RNN-LSTM vanishing gradient problems common in
variant) traditional RNNs.

Hybrid CNN- | Combined convolutional layers for
RNN spatial extraction with recurrent layers
for temporal sequencing. This model
was expected to benefit most from
spatiotemporal features due to its dual
representation learning capacity.

3.3 Evaluation and Statistical Analysis
Model performance was assessed using standard classification
metrics: accuracy, Fl-score, precision, and recall. These
metrics provided a comprehensive understanding of each
model's capability to detect and predict varying levels of traffic
congestion. The dataset was split into 70% for training and 30%
for testing, ensuring generalizability of results. To enhance the
reliability of performance estimates, 5-fold cross-validation
was employed. Finally, paired t-tests were conducted to
statistically evaluate whether the differences in model
performance between temporal-only and spatiotemporal-
integrated  datasets were significant. This rigorous
methodology facilitated a robust comparison of ML approaches
for real-time traffic congestion prediction and offered insights
into the added value of spatiotemporal data integration. Table
4 shows equations for the spatiotemporal theory and
performance metrics.

4. RESULT AND FINDINGS

The experimental results provide empirical evidence on the
effectiveness of integrating spatiotemporal data into ML
models for road traffic congestion prediction. Five models,
SVM, RF, CNN, RNN, and a hybrid CNN-RNN were trained
and tested under temporal-only and spatiotemporal features.
Model performance was assessed using accuracy, precision,
recall, and F1-score. In addition, paired t-tests were performed
to evaluate the statistical significance of improvements
between temporal-only and spatiotemporal feature sets. The
detailed results indicate that integrating spatiotemporal data
significantly improved the accuracy of most ML models
evaluated. As shown in Table 5.

The results show three key patterns- i) Performance gains from
spatiotemporal integration were evident for RF, CNN, and
Hybrid models. RF achieved the most dramatic improvement,
rising from 60.38% to 99.90% accuracy. CNN improved from
57.86% to 64.72%, while Hybrid improved from 58.27% to
63.71%. ii) Limited or no improvement was observed for SVM
and RNN. Both models remained at baseline accuracy levels of
approximately 57.86% regardless of feature set, suggesting that
these architectures were less effective at leveraging the
additional contextual information. iii) Precision, recall, and F1
confirmed that RF, CNN, and Hybrid improvements were
consistent across congestion classes (Low, Medium, High), not
skewed by class imbalance. Table 6 presents the result of paired
t-tests comparing temporal-only versus spatiotemporal feature
sets for each model. Figure 1 illustrates models' performance,
temporal-only vs spatiotemporal.
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Table 4: Spatiotemporal and Performance Metrics Equations

Metric / Theory Equation Description
Spatiotemporal T(x, y, t) = f(S(X, }/), Temp(t), C) Traffic state T'is a function of spatial features
Modeling S (x, y), temporal features Temp(t), and contextual
factors C (e.g., weather, events). Captures the
interaction of space + time.
Accuracy A TP+TN Proportion of correctly classified congestion
ccuracy = tat t of all ictions.
y TP+TN + FP + FN states out of all predictions
Precision o TP A fraction of correctly predicted positive cases
Pre cission = W among all predicted positives (how many "High
congestion" predictions were correct).
Recall (Sensitivity) TP Fraction of correctly predicted positives among all
Recall = TP+ FN actual positives (ability to capture true
congestion).
Fl-score Fl=2 Pre cision - Recall Harmonic mean of precision and recall, balancing
= ' . . both metrics.
Pre cision + Recall ot metes
Table 5: Model Accuracy with and without Spatiotemporal Data
Model Feature Set Accuracy (%) Precision Recall F1
SVM Temporal Only 57.86 0.193 0.333 0.244
RF Temporal Only 60.38 0.529 0.422 0.416
CNN Temporal Only 57.86 0.193 0.333 0.244
RNN Temporal Only 57.86 0.193 0.333 0.244
Hybrid (CNN+RNN) Temporal Only 58.27 0.394 0.342 0.264
SVM Spatiotemporal 57.86 0.193 0.333 0.244
RF Spatiotemporal 99.90 0.998 0.999 0.999
CNN Spatiotemporal 64.72 0.601 0.484 0.493
RNN Spatiotemporal 57.86 0.193 0.333 0.244
Hybrid (CNN+RNN) Spatiotemporal 63.71 0.613 0.456 0.447
Table 6: Paired t-tests Temporal-only vs Spatiotemporal (per model)
Model Temporal Acc Spatiotemporal Acc t )/ Effect Size 95% CI1
(%) (%) (dz)
SVM 57.86 57.86 0.000 1.0000 0.000 [0.00, 0.00]
RF 60.38 99.90 45.732 <0.001 1.453 [38.20, 41.40]
CNN 57.86 64.72 5.382 <0.001 0.171 [4.20,9.50]
RNN 57.86 57.86 0.000 1.0000 0.000 [0.00, 0.00]
Hybrid 58.27 63.71 4.921 <0.001 0.156 [3.20, 8.70]
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Model Performance: Temporal Only vs Spatiotemporal
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Fig 1: Model Accuracy Comparison

The line plot visually compares the accuracy of all models with
and without spatiotemporal integration. This visual evidence
further supports the conclusion that spatiotemporal features
contribute significantly to the predictive power of ML models,
particularly those designed to handle sequence learning and
nonlinear patterns. RF demonstrated a very large and
statistically significant effect (/=45.73, p<0.001, dz=1.45),
confirming the extraordinary predictive benefit of
spatiotemporal integration. CNN and Hybrid models achieved
moderate, statistically significant improvements (p<0.001),
indicating meaningful but not extreme gains. SVM and RNN
showed no statistical improvement, which is consistent with the
descriptive results.

The experimental evidence supports the hypothesis that
spatiotemporal integration improves ML model accuracy in
traffic congestion prediction. However, the improvement scale
differs substantially across models: These findings validate the
role of spatiotemporal data and highlight model-specific
strengths and weaknesses, setting the stage for a critical
discussion in the next section.

5. DISCUSSION

The central objective of this study was to examine whether
integrating spatiotemporal features improves the predictive
accuracy of ML models for traffic congestion detection and
prediction. Results confirm that spatiotemporal enrichment
enhances performance across most models, though the
magnitude of improvement varies significantly. RF benefited
the most, achieving near-perfect accuracy with spatiotemporal
inputs. Hybrid CNN-RNN and CNN models also improved
substantially, while Support SVM and RNN models showed no
measurable improvement. These results emphasize that while
spatiotemporal integration provides critical contextual
information, model architecture and feature compatibility play
decisive roles in determining the extent of performance gains.

Traffic phenomena are inherently spatiotemporal. Congestion
is not defined solely by time-of-day patterns but by the
interaction of when and where traffic flows occur and external
contextual factors such as weather, events, and infrastructure
characteristics. Purely temporal features capture recurring
rush-hour peaks but cannot explain why congestion varies
across locations or under specific external conditions. For
instance, two road segments may experience peak-hour
congestion, but one might become more congested during rain
due to poor drainage, while the other may remain stable.
Spatiotemporal enrichment allows models to differentiate these
conditions, leading to improved predictions. The improvements
observed in CNN and Hybrid models reinforce this logic.
CNNss are designed to capture spatial correlations, while RNNs
handle sequential dependencies. When spatial and contextual
variables were added, these models gained additional
predictive power, as reflected in statistically significant
improvements in accuracy and F1.

The standout finding of this study is the almost perfect accuracy
achieved by RF with spatiotemporal features. RF is particularly
effective on structured, tabular datasets containing a mix of
categorical and continuous features. Spatiotemporal attributes
such as latitude, longitude, number of lanes, day-of-week, and
event indicators provide highly discriminative information,
allowing RF to partition the feature space into precise decision
rules. RF captures nonlinear interactions between features
without explicit feature engineering. For example, "Friday
evening + rain + downtown coordinates" might strongly predict
high congestion. Such interactions are challenging for simpler
models like SVM to learn, but RF handles them naturally.

The dataset includes rich contextual features (events, weather,
infrastructure). These attributes strongly predict congestion
levels, enabling RF to classify observations with near-
deterministic accuracy. By averaging across many decision
trees, RF reduces variance and avoids overfitting on noise,
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unlike single decision trees. This ensemble effect may explain
its ability to achieve high accuracy while maintaining
robustness within the given dataset.

While RF's impressive performance raises concerns about
generalizability and overfitting, the near-perfect performance
could indicate that RF has memorized relationships specific to
this dataset rather than learning generalizable patterns.
Although chronological splits reduce the risk of information
leakage, the possibility of dataset-specific correlations cannot
be ruled out. Some spatiotemporal attributes, particularly
geographic coordinates or event indicators, may act as near-
direct proxies for congestion levels. The model may exploit
these cues if certain coordinates are always congested at
specific times rather than learning underlying traffic dynamics.

The dataset reflects traffic from a single metropolitan area.
Patterns learned may not generalize to other cities with
different road infrastructures, cultural driving behaviors, or
event patterns. In real-world ITS applications, noise, missing
data, and unforeseen disruptions often degrade performance. A
model that appears perfect in controlled experiments may face
challenges in operational environments.

The study's findings have practical implications for ITS design
and deployment. Several limitations must be acknowledged:

L Single Dataset: The study relies on one metropolitan
dataset, limiting generalizability.
1L Model Configurations: Only one configuration of

each ML model was tested. Alternative
hyperparameter settings might yield different results.

111 Computational Resources: Deep models were
constrained by computational budgets; longer
training or larger architectures might improve their
relative performance.

The discussion highlights the transformative impact of
spatiotemporal integration on traffic congestion prediction.
RF's near-perfect accuracy illustrates the power of ensemble
methods when applied to structured contextual data but must
be interpreted cautiously. CNN and Hybrid models
demonstrate moderate but significant improvements,
reinforcing the general utility of spatiotemporal enrichment.
Together, these findings advance understanding of how
spatiotemporal features contribute to ITS and guide researchers
and practitioners in selecting appropriate ML models for traffic
prediction tasks.

6. FUTURE RESEARCH SCOPE

While the results of this study demonstrate the value of
integrating spatiotemporal data for traffic congestion
prediction, several avenues remain for future research to
expand, refine, and validate these findings.

First, cross-city validation is essential. The dataset in this study
was derived from a single metropolitan area, which may limit
generalizability. Urban traffic dynamics vary substantially
across cities due to differences in infrastructure, cultural
driving patterns, public transportation availability, and
socioeconomic factors. Future research should replicate this
analysis across multiple cities and diverse contexts to assess
whether the benefits of spatiotemporal integration are
consistent.

Second, explainable Al (XAI) techniques should be explored.
While models such as RF can provide feature importance
rankings, deep learning models often function as "black boxes."
SHAP (Shapley Additive Explanations) or LIME (Local
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Interpretable Model-agnostic Explanations) can help reveal
which spatiotemporal features most influence predictions. XAl
increases trust among policymakers and transportation
authorities and ensures that models make decisions for valid,
interpretable reasons rather than relying on artifacts or proxies.

Third, multimodal data integration represents a promising
direction. Beyond spatiotemporal traffic data, models could
incorporate complementary data sources such as real-time
weather forecasts, road construction updates, ride-sharing
activity, or social media feeds about accidents and events.
Multimodal integration could enhance predictive robustness by
capturing influences on congestion that are not reflected in
traffic sensor data alone.

Fourth, scalability and real-time deployment should be
emphasized. While this study focused on experimental
evaluation, future work should address how these models can
be deployed in real-time ITS environments. Edge computing
and federated learning offer potential pathways for scaling
models to operate across large sensor networks while
maintaining data privacy and low latency.

Finally, researchers should explore alternative architectures
such as graph neural networks (GNNs), which are well-suited
to modeling road networks as graphs and naturally incorporate
spatial and temporal dependencies. These models could
provide a more theoretically grounded framework for
spatiotemporal traffic prediction. Future research should
prioritize  generalization,  interpretability, = multimodal
enrichment, scalability, and novel architectures to advance the
practical impact of spatiotemporal integration in ITS.

7. CONCLUSION

This study set out to investigate whether integrating real-time
spatiotemporal data enhances the predictive accuracy of ML
models for road traffic congestion detection and prediction.
Using a metropolitan dataset, five ML models: SVM, RF,
CNN, RNN, and a hybrid CNN-RNN were evaluated under two
conditions:  temporal-only  features and integrated
spatiotemporal features. The results demonstrate that
spatiotemporal enrichment improves model performance,
though the extent of improvement varies by architecture. RF
achieved near-perfect accuracy when provided with
spatiotemporal features, underscoring the capacity of ensemble
methods to capture complex feature interactions in structured
datasets. CNN and Hybrid CNN-RNN models also exhibited
significant improvements, benefiting from their ability to
process spatial and temporal dependencies jointly. By contrast,
SVM and RNN models showed negligible gains, suggesting
limitations in their ability to leverage contextual attributes
under the current configurations.

Importantly, the study employed descriptive performance
metrics and statistical significance testing. Paired t-tests and
effect size analyses confirmed that RF, CNN, and Hybrid
model improvements were statistically and practically
significant. These results reinforce the conclusion that
spatiotemporal integration provides tangible benefits for traffic
prediction. The study acknowledges potential concerns
regarding RF's exceptionally high performance, noting risks of
overfitting, feature leakage, and limited generalizability
beyond the dataset. These caveats highlight the importance of
validating models across cities, applying explainable Al
methods, and considering robustness in real-time deployment.
This research contributes to the growing field of Al-driven ITS
by providing empirical evidence that spatiotemporal
integration is a key enabler of accuracy, robustness, and
trustworthiness in ML-based congestion prediction.
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