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ABSTRACT 

Urban traffic congestion has emerged as one of the most 

pressing challenges in today's metropolitan areas, directly 

influencing economic productivity, environmental 

sustainability, and the overall quality of life for urban residents. 

With the continuous rise in vehicle numbers and the increasing 

complexity of transportation networks, the ability to detect and 

predict congestion with high accuracy has become critical for 

effective traffic management and planning. Although machine 

learning (ML) models have demonstrated considerable promise 

in traffic prediction tasks, their performance often lacks 

contextual depth when trained solely on temporal data, such as 

timestamps or aggregated historical traffic patterns. This study 

addresses this gap by investigating the integration of real-time 

spatiotemporal data, incorporating both spatial features (road 

location, number of lanes, geographic coordinates, and event 

information) and temporal features (time-of-day, day-of-week, 

etc.) to enhance the predictive accuracy of ML models for road 

traffic congestion. Using a comprehensive dataset collected 

from a metropolitan city, five different ML models were 

implemented and evaluated, including Support Vector Machine 

(SVM), Random Forest (RF), Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), and a hybrid CNN-

RNN architecture. Each model was trained and tested under 

two scenarios: temporal features only and integrated 

spatiotemporal features. The results indicate that 

spatiotemporal integration substantially improves prediction 

accuracy across most models, with ensemble-based methods 

such as RF achieving near-perfect classification, and hybrid 

deep learning architectures demonstrating significant gains 

compared to their temporal-only counterparts. Statistical 

significance testing further validated these improvements, 

reinforcing the value of spatiotemporal enrichment for 

predictive tasks. The findings underscore that spatial and 

temporal contextualization of traffic data improves model 

robustness and provides critical insights for developing 

intelligent transportation systems (ITS) capable of delivering 

real-time, adaptive congestion management solutions. This 

research contributes to the growing knowledge in smart 

mobility by offering empirical evidence that spatiotemporal 

data integration is a key driver of accuracy and reliability in 

ML-based traffic prediction. 
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1. INTRODUCTION 
Urban traffic congestion has emerged as one of modern 

urbanization's most persistent and costly challenges. As 

populations migrate toward metropolitan centers and car 

ownership rises, road networks become increasingly saturated. 

In the United States alone, the Texas A&M Transportation 

Institute (2024) reported that the average commuter lost 54 

hours annually in congestion delays, with an associated fuel 

wastage of more than 3.5 billion gallons [1]. Beyond the 

economic implications, traffic congestion contributes 

significantly to environmental degradation by increasing 

carbon dioxide emissions and worsening air quality while 

reducing the overall quality of life for residents. These 

multifaceted consequences highlight the urgency of developing 

advanced, data-driven solutions to improve real-time 

congestion detection and prediction. 

ITS has become a cornerstone of modern efforts to address 

congestion. ITS integrates sensing technologies, wireless 

communication, and advanced analytics to provide dynamic 

traffic management capabilities. At the heart of many ITS 

applications are predictive models capable of forecasting traffic 

conditions minutes or hours ahead, allowing for preemptive 

interventions such as adaptive signal control, dynamic tolling, 

or real-time routing suggestions. Traditional statistical 

forecasting approaches, such as autoregressive integrated 

moving average (ARIMA) models or Kalman filters, initially 

held promise but have proven inadequate in capturing urban 

traffic systems' nonlinear, complex, and dynamic patterns. 

Consequently, ML and deep learning (DL) approaches have 

gained prominence for their ability to model nonlinear 

relationships and deliver more accurate predictions. 

While ML approaches, including SVM, RF, and neural 

network architectures, have demonstrated strong predictive 

capabilities, they often rely heavily on temporal data. These 

temporal features, such as timestamps or aggregated historical 

speed and volume data, provide a limited representation of 

traffic dynamics. Temporal-only models may capture daily 

rush-hour patterns but cannot account for the complex interplay 

between traffic flow and spatial or contextual factors. For 

instance, congestion along a downtown arterial may differ 

significantly from congestion on a highway corridor, even at 

the same time of day. Moreover, external contextual factors 

such as weather conditions, special events, or accidents can 

drastically alter traffic patterns in ways that purely temporal 

features cannot capture. 

Integrating spatiotemporal data addresses this limitation by 

combining temporal features with spatial and contextual 

attributes. Spatial features may include road geometry, 

geographic coordinates, and number of lanes, while contextual 

factors may include weather conditions, day-of-week, and local 

events. By enriching ML models with these additional 

dimensions, researchers aim to produce more accurate and 

robust congestion predictions that align better with the complex 

reality of urban traffic systems. Spatiotemporal integration is 
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particularly valuable because traffic phenomena are inherently 

spatiotemporal; congestion does not occur uniformly across 

space and time but emerges in localized hotspots at specific 

times. Thus, an ML model that accounts for these patterns is 

better equipped to capture real-world traffic behavior. 

Recent advances in deep learning architectures, such as CNNs 

and RNNs, further motivate the exploration of spatiotemporal 

integration. CNNs excel at extracting spatial dependencies 

from data, while RNNs are well-suited to model sequential 

temporal dependencies. Hybrid architectures that combine 

CNN and RNN layers are designed to exploit both spatial and 

temporal correlations, making them especially promising for 

traffic congestion prediction. Ensemble methods such as RF 

offer strong performance on structured, tabular datasets, 

demonstrating resilience to noise and nonlinearity. Yet, few 

studies systematically compare these approaches under 

temporal-only versus spatiotemporal conditions, leaving an 

important gap in the literature. 

This research seeks to fill that gap by empirically evaluating 

whether spatiotemporal integration improves the accuracy of 

ML models for road traffic congestion prediction. Using a real-

world dataset collected from a metropolitan area, the study 

examines five ML models: SVM, RF, CNN, RNN, and a hybrid 

CNN-RNN. Each model is trained and tested under two feature 

configurations: temporal-only and spatiotemporal. 

Performance metrics include accuracy, precision, recall, and F1 

score, while paired t-tests evaluate the statistical significance of 

performance differences. The study provides robust evidence 

on the benefits or limitations of spatiotemporal integration by 

conducting descriptive and inferential analyses. 

The results demonstrate that integrating spatiotemporal 

features substantially improves predictive accuracy for most 

models. RF achieved near-perfect accuracy with 

spatiotemporal features, underscoring the power of ensemble 

methods when applied to structured, context-rich datasets. 

Hybrid CNN-RNN models also markedly improved, indicating 

the benefits of combining spatial and temporal learning 

capacities. By contrast, models such as SVM and RNN showed 

limited improvements, suggesting that not all ML approaches 

benefit equally from spatiotemporal integration. 

The contributions of this research are threefold. First, it 

provides an empirical comparison of multiple ML models 

under temporal-only and spatiotemporal conditions, filling a 

gap in current ITS literature. Second, it introduces statistical 

significance testing (t-tests and effect size calculations) to 

assess whether observed improvements are robust rather than 

incidental. Third, it critically examines the implications of 

exceptionally high performance achieved by RF with 

spatiotemporal data, framing it as both a strength and a 

limitation for practical deployment. 

The remainder of this paper is organized as follows. Section 2 

reviews the ML-based traffic congestion prediction literature, 

highlighting prior work on temporal and spatiotemporal 

approaches. Section 3 outlines the dataset, feature engineering 

strategies, and modeling methodology. Section 4 presents the 

results, while Section 5 discusses the implications of the 

findings, with particular attention to the interpretability and 

trustworthiness of near-perfect model performance. Section 6 

outlines directions for future research, and Section 7 concludes 

the paper.  

2. LITERATURE REVIEW 
Traffic congestion prediction using artificial intelligence (AI) 

and ML has rapidly evolved in recent years, with growing 

emphasis on integrating spatiotemporal data. Unlike purely 

temporal features, spatiotemporal inputs capture when and 

where congestion occurs and contextual attributes such as road 

type, weather, and special events. This holistic representation 

of traffic dynamics has significantly improved predictive 

accuracy across various ML architectures [2]. 

Spatiotemporal data provides a richer contextual understanding 

of traffic conditions than temporal data alone. Zhou et al. [2] 

demonstrated that models leveraging both spatial and temporal 

information outperformed temporal-only baselines, 

particularly in highly dynamic urban environments where 

congestion is shaped by road layout, land use, and human 

activity patterns. Similarly, in a multi-city study, Wei et al. [3] 

found that incorporating spatiotemporal data allowed models to 

capture broader congestion determinants such as population 

density, public transportation access, and road infrastructure 

capacity. These findings underscore the importance of 

spatiotemporal integration in building more generalizable 

traffic prediction models across diverse urban settings. 

The adoption of CNNs has become prevalent in traffic 

prediction tasks due to their ability to detect spatial 

correlations. Gao et al. [4] employed CNNs on traffic heatmaps 

derived from GPS trajectory data, showing that CNNs could 

accurately identify congestion hotspots and their spatial 

diffusion patterns. Beyond spatial analysis, Long Short-Term 

Memory (LSTM) networks have emerged as leading methods 

for modeling sequential temporal dependencies. Christalin et 

al. [5] illustrated how LSTMs learn daily and weekly traffic 

cycles, effectively predicting recurring rush-hour peaks and 

weekend traffic flows. Together, CNNs and LSTMs highlight 

the dual importance of learning from spatial and temporal 

signals in traffic data. 

Research has recently focused on hybrid architectures that 

integrate CNN and RNN components. These hybrid models 

leverage CNNs to capture local spatial correlations and RNNs 

to model long-term temporal dynamics. Slimani et al. [6] 

demonstrated that a CNN-LSTM hybrid architecture 

outperformed standalone CNN or LSTM models, achieving 

higher accuracy and improved computational efficiency. 

Medina-Salgado et al. [7] extended this work by highlighting 

interpretability challenges in hybrid models but acknowledged 

that, when properly configured, such models offer superior 

predictive performance across heterogeneous traffic datasets. 

The hybridization trend reflects a broader movement in the 

field, combining complementary architectures to better 

represent the spatiotemporal complexity of traffic systems. 

The performance of ML models is strongly influenced by 

preprocessing and feature engineering. Shang et al. [8] 

emphasized that careful handling of missing values, 

normalization of continuous attributes, and appropriately 

encoding categorical variables can dramatically improve model 

stability. Li et al. [9] further demonstrated that enriching 

datasets with contextual features such as weather conditions, 

time of day, and event schedules improved prediction accuracy 

across multiple ML frameworks. These findings are consistent 

with the principle that traffic congestion is not purely a function 

of flow and speed but is also shaped by external contextual 

factors that vary dynamically. 

The granularity of temporal aggregation plays an important role 

in traffic prediction accuracy. Zhao et al. [10] showed that 

using finer-grained intervals (e.g., 15 minutes) improved short-

term forecasting accuracy compared to hourly data, but the 

computational burden increased substantially. Building on this, 

Tang et al. [11] introduced a novel framework that explicitly 
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aggregates and weights temporal features across multiple time 

scales. Their model demonstrated significantly better 

forecasting accuracy than conventional stacked LSTM 

approaches, illustrating that capturing multi-scale temporal 

dynamics is essential for robust traffic prediction. 

As ML models become increasingly embedded in real-time 

traffic management systems, issues of explainability and 

trustworthiness are gaining attention. Javed et al. [12] 

advocated for integrating explainable AI (XAI) methods in 

traffic prediction to ensure that model outputs are interpretable 

by practitioners and policymakers. Techniques such as SHAP 

(Shapley Additive Explanations) can help identify which 

spatiotemporal features (e.g., weather or location) drive 

predictions, increasing confidence in AI-driven ITS 

applications. Jiang et al. [13] further argued that explainability 

is critical for aligning AI models with the broader goals of 

smart city infrastructure, where transparency and 

accountability are necessary for sustainable urban mobility 

strategies. 

The literature from 2021 to 2025 demonstrates significant 

advances in spatiotemporal traffic prediction. CNNs, LSTMs, 

and hybrid models dominate the deep learning space, while 

ensemble methods such as RF deliver competitive performance 

on structured tabular data. Preprocessing, temporal granularity, 

and contextual enrichment are crucial for maximizing 

predictive performance. However, several gaps remain: 

I. Few studies systematically compare multiple ML 

architectures under identical temporal-only versus 

spatiotemporal conditions. 

II. Statistical validation (e.g., paired t-tests, effect size 

measures) is rarely performed, leaving open 

questions about the robustness of reported 

improvements. 

III. The generalizability of models across cities and 

datasets is still uncertain, as most studies evaluate 

models within single metropolitan areas. 

IV. Explainability and ethical concerns remain 

underexplored, despite increasing recognition of 

their importance for deployment in ITS. 

This study addresses the two listed gaps (I and II) by 

comprehensively comparing five ML models under both 

temporal-only and spatiotemporal conditions, while 

incorporating statistical testing to validate performance 

improvements. 

3. METHODOLOGY 
This study adopted a quantitative, quasi-experimental research 

design to investigate the impact of integrating real-time 

spatiotemporal data on the predictive accuracy of ML models 

for road traffic congestion detection and prediction. The dataset 

was obtained from open-source traffic APIs, focusing on major 

road segments within the Kansas City metropolitan area. It 

comprised various traffic-related features, including 

timestamps, latitude and longitude coordinates, congestion 

levels (low, medium, or high), average traffic speed, weather 

conditions, and indicators for the day of the week. The data 

were segmented into 15-minute and 30-minute intervals to 

account for temporal variability, supporting fine- and coarse-

grained temporal learning analyses. Table 1 shows the dataset's 

fields with descriptions: 

 

 

 

Table 1: Dataset's Fields and Brief Description 

Field Description 

Timestamp, 

Date 

Temporal indicators for traffic capture 

(time and date of recording) 

Latitude, 

Longitude 

Spatial coordinates for road segments 

(point of road intersection) 

Road_ID Unique road segment identifier (e.g., 

R101) 

Avg_Speed 

(km/h) 

Measured or inferred average vehicle 

speed 

Congestion_Lev

el 

Classified as Low, Medium, or High 

Weather Weather conditions during recording 

Day_of_Week Temporal context for trend analysis 

(Monday, Tuesday) 

Event Local events affecting traffic (like 

accidents, farmers' markets, etc.) 

No_of_Lane Structural road data relevant to 

congestion (example: 2 lanes, 4 lanes) 

 

3.1 Data Collection and Preprocessing 
Preprocessing steps were critical to preparing the dataset for 

accurate model training and evaluation. To ensure continuity 

and consistency, missing values were addressed using forward-

fill and linear interpolation techniques. Continuous variables 

such as traffic speed and geographical coordinates were 

normalized to bring them to a common scale, thereby 

improving model convergence and performance. Categorical 

variables, including weather conditions, were transformed 

using one-hot encoding to facilitate model interpretability and 

performance in classification tasks. Data were aggregated into 

fixed intervals to enhance temporal learning and maintain 

uniformity across time-series inputs. Congestion levels were 

label-encoded to enable supervised classification tasks across 

all models. Table 2 shows the data collection process from start 

to finish: 

Table 2: Data Collection Process 

Step Description 

Start The data collection process begins, and 

objectives and workflow are established. 

Structure 

Dataset 

Define the dataset schema, including 

timestamp, road ID, coordinates, average 

speed, and congestion level. 

Enable APIs Activate required Google Cloud APIs 

(e.g., Distance Matrix, Maps, Traffic 

Layer) for data retrieval. 

Generate API 

Key 

Create and securely store an API key to 

authenticate requests to Google Maps 

APIs. 

Assign 

Intersections 

Select intersections or road segments of 

interest and assign unique road identifiers 

(Road_ID). 
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Call Distance 

Matrix API 

Collect travel time and distance between 

origins and destinations to estimate 

dynamic traffic conditions. 

Calculate 

Average 

Speed 

Compute the average speed of vehicles 

using collected travel time and distance 

values. 

Apply Traffic 

Layer 

Retrieve real-time congestion levels (low, 

medium, high) using Google Maps Traffic 

Layer. 

Categorize 

Congestion 

Label traffic conditions into defined 

congestion categories for supervised 

learning. 

Finish End of the data collection workflow, 

producing a structured dataset ready for 

preprocessing and analysis. 

 

3.2 Model Development 
Several ML and deep learning models were developed and 

tested to compare their performance under temporal-only and 

spatiotemporal enhanced datasets. The SVM model served as a 

traditional baseline algorithm for linear classification. The RF 

model, an ensemble learning method known for its robustness 

to noise and overfitting, was evaluated on raw and enhanced 

feature sets. CNN was designed to process spatially gridded 

representations of traffic data, capturing local patterns in road 

segment behavior. The RNN, specifically the LSTM variant, 

was trained on sequential time series data to model temporal 

dependencies. Additionally, a hybrid CNN-RNN model was 

implemented by combining CNN-based feature extraction with 

LSTM-based sequence modeling to simultaneously leverage 

spatial and temporal dynamics. Table 3 shows all the models 

with a brief description: 

Table 3: ML Models Used in the Study 

Model Description 

Support Vector 

Machine 

(SVM) 

A linear kernel SVM was used to 

classify congestion levels. Although 

computationally demanding on large 

datasets, SVM was included as a 

baseline due to its historical importance 

in traffic prediction. 

Random Forest 

(RF) 

Configured with 80–100 decision trees, 

each trained on bootstrapped samples. 

RF was expected to perform well given 

its ability to handle categorical and 

continuous attributes and capture 

nonlinear feature interactions. 

Convolutional 

Neural 

Network 

(CNN) 

Designed with one-dimensional 

convolutional layers to process 

sequential traffic data and detect spatial 

correlations in feature patterns. 

Rectified Linear Unit (ReLU) activation 

functions were used. 

Recurrent 

Neural 

Network 

(RNN-LSTM 

variant) 

Employed to capture sequential 

temporal dependencies across traffic 

observations. LSTM units help address 

vanishing gradient problems common in 

traditional RNNs. 

Hybrid CNN-

RNN 

Combined convolutional layers for 

spatial extraction with recurrent layers 

for temporal sequencing. This model 

was expected to benefit most from 

spatiotemporal features due to its dual 

representation learning capacity. 

  

3.3 Evaluation and Statistical Analysis 
Model performance was assessed using standard classification 

metrics: accuracy, F1-score, precision, and recall. These 

metrics provided a comprehensive understanding of each 

model's capability to detect and predict varying levels of traffic 

congestion. The dataset was split into 70% for training and 30% 

for testing, ensuring generalizability of results. To enhance the 

reliability of performance estimates, 5-fold cross-validation 

was employed. Finally, paired t-tests were conducted to 

statistically evaluate whether the differences in model 

performance between temporal-only and spatiotemporal-

integrated datasets were significant. This rigorous 

methodology facilitated a robust comparison of ML approaches 

for real-time traffic congestion prediction and offered insights 

into the added value of spatiotemporal data integration. Table 

4 shows equations for the spatiotemporal theory and 

performance metrics. 

4. RESULT AND FINDINGS 
The experimental results provide empirical evidence on the 

effectiveness of integrating spatiotemporal data into ML 

models for road traffic congestion prediction. Five models, 

SVM, RF, CNN, RNN, and a hybrid CNN-RNN were trained 

and tested under temporal-only and spatiotemporal features. 

Model performance was assessed using accuracy, precision, 

recall, and F1-score. In addition, paired t-tests were performed 

to evaluate the statistical significance of improvements 

between temporal-only and spatiotemporal feature sets. The 

detailed results indicate that integrating spatiotemporal data 

significantly improved the accuracy of most ML models 

evaluated. As shown in Table 5. 

The results show three key patterns- i) Performance gains from 

spatiotemporal integration were evident for RF, CNN, and 

Hybrid models. RF achieved the most dramatic improvement, 

rising from 60.38% to 99.90% accuracy. CNN improved from 

57.86% to 64.72%, while Hybrid improved from 58.27% to 

63.71%. ii) Limited or no improvement was observed for SVM 

and RNN. Both models remained at baseline accuracy levels of 

approximately 57.86% regardless of feature set, suggesting that 

these architectures were less effective at leveraging the 

additional contextual information. iii) Precision, recall, and F1 

confirmed that RF, CNN, and Hybrid improvements were 

consistent across congestion classes (Low, Medium, High), not 

skewed by class imbalance. Table 6 presents the result of paired 

t-tests comparing temporal-only versus spatiotemporal feature 

sets for each model. Figure 1 illustrates models' performance, 

temporal-only vs spatiotemporal. 
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Table 4: Spatiotemporal and Performance Metrics Equations 

Metric / Theory Equation Description 

Spatiotemporal 

Modeling 
𝑇(𝑥, 𝑦, 𝑡) = 𝑓(𝑆(𝑥, 𝑦), 𝑇𝑒𝑚𝑝(𝑡), 𝐶) 

 

Traffic state T is a function of spatial features  

S (x, y), temporal features Temp(t), and contextual 

factors C (e.g., weather, events). Captures the 

interaction of space + time. 

Accuracy 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Proportion of correctly classified congestion 

states out of all predictions. 

Precision 
Pr 𝑒 𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

A fraction of correctly predicted positive cases 

among all predicted positives (how many "High 

congestion" predictions were correct). 

Recall (Sensitivity) 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Fraction of correctly predicted positives among all 

actual positives (ability to capture true 

congestion). 

F1-score 
𝐹1 = 2  ∙

Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛  ∙  𝑅𝑒𝑐𝑎𝑙𝑙

Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Harmonic mean of precision and recall, balancing 

both metrics. 

 
Table 5: Model Accuracy with and without Spatiotemporal Data 

Model Feature Set Accuracy (%)  Precision Recall  F1 

SVM Temporal Only 57.86 0.193 0.333 0.244 

RF Temporal Only 60.38 0.529 0.422 0.416 

CNN Temporal Only 57.86 0.193 0.333 0.244 

RNN Temporal Only 57.86 0.193 0.333 0.244 

Hybrid (CNN+RNN) Temporal Only 58.27 0.394 0.342 0.264 

SVM Spatiotemporal 57.86 0.193 0.333 0.244 

RF Spatiotemporal 99.90 0.998 0.999 0.999 

CNN Spatiotemporal 64.72 0.601 0.484 0.493 

RNN Spatiotemporal 57.86 0.193 0.333 0.244 

Hybrid (CNN+RNN) Spatiotemporal 63.71 0.613 0.456 0.447 

 

Table 6: Paired t-tests Temporal-only vs Spatiotemporal (per model) 

Model Temporal Acc 

(%) 

Spatiotemporal Acc 

(%) 

t p Effect Size 

(dz) 

95% CI  

SVM 57.86 57.86 0.000 1.0000 0.000 [0.00, 0.00] 

RF 60.38 99.90 45.732 <0.001 1.453 [38.20, 41.40] 

CNN 57.86 64.72 5.382 <0.001 0.171 [4.20, 9.50] 

RNN 57.86 57.86 0.000 1.0000 0.000 [0.00, 0.00] 

Hybrid 58.27 63.71 4.921 <0.001 0.156 [3.20, 8.70] 
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Fig 1: Model Accuracy Comparison 

The line plot visually compares the accuracy of all models with 

and without spatiotemporal integration. This visual evidence 

further supports the conclusion that spatiotemporal features 

contribute significantly to the predictive power of ML models, 

particularly those designed to handle sequence learning and 

nonlinear patterns. RF demonstrated a very large and 

statistically significant effect (t=45.73, p<0.001, dz=1.45), 

confirming the extraordinary predictive benefit of 

spatiotemporal integration. CNN and Hybrid models achieved 

moderate, statistically significant improvements (p<0.001), 

indicating meaningful but not extreme gains. SVM and RNN 

showed no statistical improvement, which is consistent with the 

descriptive results. 

The experimental evidence supports the hypothesis that 

spatiotemporal integration improves ML model accuracy in 

traffic congestion prediction. However, the improvement scale 

differs substantially across models: These findings validate the 

role of spatiotemporal data and highlight model-specific 

strengths and weaknesses, setting the stage for a critical 

discussion in the next section. 

5. DISCUSSION 
The central objective of this study was to examine whether 

integrating spatiotemporal features improves the predictive 

accuracy of ML models for traffic congestion detection and 

prediction. Results confirm that spatiotemporal enrichment 

enhances performance across most models, though the 

magnitude of improvement varies significantly. RF benefited 

the most, achieving near-perfect accuracy with spatiotemporal 

inputs. Hybrid CNN-RNN and CNN models also improved 

substantially, while Support SVM and RNN models showed no 

measurable improvement. These results emphasize that while 

spatiotemporal integration provides critical contextual 

information, model architecture and feature compatibility play 

decisive roles in determining the extent of performance gains. 

Traffic phenomena are inherently spatiotemporal. Congestion 

is not defined solely by time-of-day patterns but by the 

interaction of when and where traffic flows occur and external 

contextual factors such as weather, events, and infrastructure 

characteristics. Purely temporal features capture recurring 

rush-hour peaks but cannot explain why congestion varies 

across locations or under specific external conditions. For 

instance, two road segments may experience peak-hour 

congestion, but one might become more congested during rain 

due to poor drainage, while the other may remain stable. 

Spatiotemporal enrichment allows models to differentiate these 

conditions, leading to improved predictions. The improvements 

observed in CNN and Hybrid models reinforce this logic. 

CNNs are designed to capture spatial correlations, while RNNs 

handle sequential dependencies. When spatial and contextual 

variables were added, these models gained additional 

predictive power, as reflected in statistically significant 

improvements in accuracy and F1. 

The standout finding of this study is the almost perfect accuracy 

achieved by RF with spatiotemporal features. RF is particularly 

effective on structured, tabular datasets containing a mix of 

categorical and continuous features. Spatiotemporal attributes 

such as latitude, longitude, number of lanes, day-of-week, and 

event indicators provide highly discriminative information, 

allowing RF to partition the feature space into precise decision 

rules. RF captures nonlinear interactions between features 

without explicit feature engineering. For example, "Friday 

evening + rain + downtown coordinates" might strongly predict 

high congestion. Such interactions are challenging for simpler 

models like SVM to learn, but RF handles them naturally. 

The dataset includes rich contextual features (events, weather, 

infrastructure). These attributes strongly predict congestion 

levels, enabling RF to classify observations with near-

deterministic accuracy. By averaging across many decision 

trees, RF reduces variance and avoids overfitting on noise, 
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unlike single decision trees. This ensemble effect may explain 

its ability to achieve high accuracy while maintaining 

robustness within the given dataset. 

While RF's impressive performance raises concerns about 

generalizability and overfitting, the near-perfect performance 

could indicate that RF has memorized relationships specific to 

this dataset rather than learning generalizable patterns. 

Although chronological splits reduce the risk of information 

leakage, the possibility of dataset-specific correlations cannot 

be ruled out. Some spatiotemporal attributes, particularly 

geographic coordinates or event indicators, may act as near-

direct proxies for congestion levels. The model may exploit 

these cues if certain coordinates are always congested at 

specific times rather than learning underlying traffic dynamics. 

The dataset reflects traffic from a single metropolitan area. 

Patterns learned may not generalize to other cities with 

different road infrastructures, cultural driving behaviors, or 

event patterns. In real-world ITS applications, noise, missing 

data, and unforeseen disruptions often degrade performance. A 

model that appears perfect in controlled experiments may face 

challenges in operational environments. 

The study's findings have practical implications for ITS design 

and deployment. Several limitations must be acknowledged: 

I. Single Dataset: The study relies on one metropolitan 

dataset, limiting generalizability. 

II. Model Configurations: Only one configuration of 

each ML model was tested. Alternative 

hyperparameter settings might yield different results. 

III. Computational Resources: Deep models were 

constrained by computational budgets; longer 

training or larger architectures might improve their 

relative performance. 

The discussion highlights the transformative impact of 

spatiotemporal integration on traffic congestion prediction. 

RF's near-perfect accuracy illustrates the power of ensemble 

methods when applied to structured contextual data but must 

be interpreted cautiously. CNN and Hybrid models 

demonstrate moderate but significant improvements, 

reinforcing the general utility of spatiotemporal enrichment. 

Together, these findings advance understanding of how 

spatiotemporal features contribute to ITS and guide researchers 

and practitioners in selecting appropriate ML models for traffic 

prediction tasks. 

6. FUTURE RESEARCH SCOPE 
While the results of this study demonstrate the value of 

integrating spatiotemporal data for traffic congestion 

prediction, several avenues remain for future research to 

expand, refine, and validate these findings. 

First, cross-city validation is essential. The dataset in this study 

was derived from a single metropolitan area, which may limit 

generalizability. Urban traffic dynamics vary substantially 

across cities due to differences in infrastructure, cultural 

driving patterns, public transportation availability, and 

socioeconomic factors. Future research should replicate this 

analysis across multiple cities and diverse contexts to assess 

whether the benefits of spatiotemporal integration are 

consistent. 

Second, explainable AI (XAI) techniques should be explored. 

While models such as RF can provide feature importance 

rankings, deep learning models often function as "black boxes." 

SHAP (Shapley Additive Explanations) or LIME (Local 

Interpretable Model-agnostic Explanations) can help reveal 

which spatiotemporal features most influence predictions. XAI 

increases trust among policymakers and transportation 

authorities and ensures that models make decisions for valid, 

interpretable reasons rather than relying on artifacts or proxies. 

Third, multimodal data integration represents a promising 

direction. Beyond spatiotemporal traffic data, models could 

incorporate complementary data sources such as real-time 

weather forecasts, road construction updates, ride-sharing 

activity, or social media feeds about accidents and events. 

Multimodal integration could enhance predictive robustness by 

capturing influences on congestion that are not reflected in 

traffic sensor data alone. 

Fourth, scalability and real-time deployment should be 

emphasized. While this study focused on experimental 

evaluation, future work should address how these models can 

be deployed in real-time ITS environments. Edge computing 

and federated learning offer potential pathways for scaling 

models to operate across large sensor networks while 

maintaining data privacy and low latency. 

Finally, researchers should explore alternative architectures 

such as graph neural networks (GNNs), which are well-suited 

to modeling road networks as graphs and naturally incorporate 

spatial and temporal dependencies. These models could 

provide a more theoretically grounded framework for 

spatiotemporal traffic prediction. Future research should 

prioritize generalization, interpretability, multimodal 

enrichment, scalability, and novel architectures to advance the 

practical impact of spatiotemporal integration in ITS. 

7. CONCLUSION 
This study set out to investigate whether integrating real-time 

spatiotemporal data enhances the predictive accuracy of ML 

models for road traffic congestion detection and prediction. 

Using a metropolitan dataset, five ML models: SVM, RF, 

CNN, RNN, and a hybrid CNN-RNN were evaluated under two 

conditions: temporal-only features and integrated 

spatiotemporal features. The results demonstrate that 

spatiotemporal enrichment improves model performance, 

though the extent of improvement varies by architecture. RF 

achieved near-perfect accuracy when provided with 

spatiotemporal features, underscoring the capacity of ensemble 

methods to capture complex feature interactions in structured 

datasets. CNN and Hybrid CNN-RNN models also exhibited 

significant improvements, benefiting from their ability to 

process spatial and temporal dependencies jointly. By contrast, 

SVM and RNN models showed negligible gains, suggesting 

limitations in their ability to leverage contextual attributes 

under the current configurations. 

Importantly, the study employed descriptive performance 

metrics and statistical significance testing. Paired t-tests and 

effect size analyses confirmed that RF, CNN, and Hybrid 

model improvements were statistically and practically 

significant. These results reinforce the conclusion that 

spatiotemporal integration provides tangible benefits for traffic 

prediction. The study acknowledges potential concerns 

regarding RF's exceptionally high performance, noting risks of 

overfitting, feature leakage, and limited generalizability 

beyond the dataset. These caveats highlight the importance of 

validating models across cities, applying explainable AI 

methods, and considering robustness in real-time deployment. 

This research contributes to the growing field of AI-driven ITS 

by providing empirical evidence that spatiotemporal 

integration is a key enabler of accuracy, robustness, and 

trustworthiness in ML-based congestion prediction. 
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