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ABSTRACT
Predicting the likelihood of loan default remains a critical challenge
in credit risk modeling, where data imbalance, high dimensionality,
and nonlinear interactions often limit the effectiveness of
traditional scoring techniques. This paper presents a machine
learning pipeline for credit risk prediction using financial datasets.
We evaluate six main classifiers—Logistic Regression, Gaussian
Naive Bayes, Support Vector Machines, Random Forest, XGBoost,
and LightGBM and a variant of two of the classifiers for further
comparison. Models are benchmarked using accuracy, precision,
recall, and the Kolmogorov–Smirnov statistic widely used in
financial risk scoring. Our results indicate that ensemble methods
combined with hybrid resampling techniques can consistently
offer significant improvements in default risk separation without
requiring dimensionality reduction methods, complex deep neural
architectures or other black-box models. This makes them suitable
for both regulated credit scoring environments and modern
machine learning-driven financial applications.
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1. INTRODUCTION
The possibility of a borrower failing to meet repayment
obligations directly impacts a financial institution’s solvency,
capital allocation, and operational continuity. Failures in risk
assessment can lead to cascading defaults, systemic distress, and
regulatory intervention. As global credit markets expand and
digitize, the ability to accurately assess borrower risk becomes not
only a regulatory necessity but also a competitive differentiator.
Yet, the task of managing credit risk grows increasingly complex.
Institutions today must contend with rapidly changing market
conditions, borrower behaviors, emerging financial technologies,
and a heightened regulatory environment. Modern credit evaluation
is no longer limited to a borrower’s declared income or collateral.
It spans a broad set of attributes such as employment stability,
credit history, payment behavior, loan terms, and increasingly
leverages external data such as credit bureau reports, digital
footprints, and macroeconomic signals. Financial institutions face

mounting challenges, including data sparsity, model transparency
requirements, cybersecurity risks, and the imperative to align credit
decisions with evolving business strategies [7]. Traditional methods
for assessing creditworthiness, such as the “5C” framework
(Character, Capacity, Capital, Collateral, and Conditions), rely
heavily on expert judgment and qualitative appraisal.

While these approaches provide interpretability and historical
anchoring, they are now challenged by the volume, velocity, and
variety of financial data in modern lending ecosystems. Similarly,
scorecard-based models such as behavioural scorecard, though
widely adopted due to their transparency and ease of regulatory
acceptance, tend to underperform in nonlinear, high-dimensional,
and imbalanced settings prevalent in contemporary credit data [10].

To meet these challenges, credit risk modeling has become
a critical axis around which both strategy and compliance
revolve, particularly under international standards such as Basel
II and III [5]. Credit institutions are progressively integrating
machine learning into their risk assessment workflows. This study
contributes to the growing body of literature by developing and
evaluating a comprehensive, reproducible pipeline for credit risk
prediction using structured loan-level data. Our core contributions
are threefold:

(1) We design a full pipeline that includes preprocessing, feature
engineering and model training using both interpretable and
high-performance learners.

(2) We demonstrate that integrating an ensemble learning
algorithm with a hybrid resampling strategy can yield strong
classification performance, eliminating the need for explicit
dimensionality reduction.

(3) We conduct detailed performance diagnostics to assess not
only predictive accuracy but also the robustness and calibration
of the models across class-imbalanced data.

2. RELATED WORK
Credit risk modeling has evolved significantly over the past
two decades, shifting from traditional statistical approaches to
more flexible and accurate machine learning frameworks. Logistic
regression and other linear discriminant models have long been
foundational tools due to their interpretability and compliance with
regulatory standards. However, these models often fall short in
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handling high-dimensional feature spaces, nonlinearity, and the
class imbalance that typically characterizes loan datasets [11].
To address these limitations, recent studies have focused on
the application of supervised and unsupervised machine learning
approach to credit scoring. [2] systematically compared several
commonly used ML classifiers, including Random Forest, Support
Vector Machines, and boosting methods across European credit
data. Their results showed that ensemble models consistently
outperformed traditional linear models. [12] examined peer-to-peer
lending data and confirmed the strength of boosting algorithms
such as XGBoost and LightGBM in terms of both predictive power
and stability under imbalance.

The role of preprocessing and transformation has also been a focal
point in recent literature. The works in [16] and [17] evaluated
credit scoring models with and without Weights of Evidence
(WoE) encoding. Their findings suggest that WoE transformations
may enhance model performance depending on the underlying
classifier but are not universally beneficial. [20] explored the
use of hybrid resampling techniques such as synthetic minority
over-sampling technique (SMOTE) and edited nearest neighbors
methods (ENN) in combination with tree-based learners. They
reported that LightGBM with SMOTEENN and the principal
component analysis method yielded the highest KS statistic in their
benchmarks, outperforming deep learning models. [4] stressed the
need for standardized pipelines in credit risk prediction research,
advocating for consistent preprocessing, feature selection, and
validation methods that improves reproducibility. Our study is
designed in line with these best practices, incorporating hybrid
resampling, dimensionality reduction, and a unified evaluation
framework across multiple classifiers.

3. DATA PREPROCESSING AND MODELING
PIPELINE

The prediction task is formulated as a supervised binary
classification problem using a structured loan-level data obtained
from a real-time financial database. The dataset includes borrower
demographic features (such as age, employment length, income,
and home ownership status), loan metadata (amount, intent, and
grade), and a historical risk label indicating default or repayment.
Loans are graded from A to G based on internal creditworthiness
criteria, with higher grades corresponding to higher expected
default risk and interest rates. See Figure 1. Also, Table 1 shows
a detailed description of our dataset.
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Fig. 1: Loan grade vs interest rates

3.1 Feature correlation analysis
One of the challenges with modeling financial dataset to assess
fraud and borrower risk using machine learning models is
the complex inter-feature relationships. Understanding feature
correlation is thus essential for uncovering hidden data patterns and
to determine proper modeling approach for the task. The feature
relationship of our dataset is shown in Figure 2. Using Pearson
correlation coefficients (ranging from −1 to +1) in Equation (1),
we evaluate the linear relationships among all numeric variables in
the dataset.

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(1)

where Xi and Yi are the individual sample points, X̄ and Ȳ are
the sample means of X and Y respectively, and n is the number of
observations. This coefficient quantifies the strength and direction
of the linear relationship between two continuous variables, taking
values between −1 (perfect negative correlation) and +1 (perfect
positive correlation) with 0 indicating no linear correlation. The key
observations are enumerated as follows:

(1) High Positive Correlation: Age and credit history length
show a very strong positive correlation of approximately r =
0.86, indicating that older individuals generally have longer
credit histories.

(2) Moderate Positive Correlation: Loan amount and the
percentage of income allocated to the loan exhibit a moderate
correlation (r ≈ 0.57), suggesting that larger loans tend to
represent a greater share of the borrower’s income. Similarly,
loan interest rate and default status correlate at r ≈ 0.34 which
means that higher interest rates may be associated with an
increased risk of default. Default status and loan-to-income
ratio also show moderate correlation (r ≈ 0.38) and this
further emphasizes the importance of borrower affordability.

(3) Weak or Negligible Correlation: Several variables such
as income and interest rate or age and interest rate, show
negligible correlation (near zero) and this implies minimal
direct linear association or potentially more complex nonlinear
patterns.

(4) Negative Correlation: A moderate negative correlation (r ≈
−0.25) is observed between income and loan-to-income
ratio, reflecting the intuitive relationship that higher-income
individuals tend to have a smaller proportion of their income
committed to loan repayments.

These insights are necessary for both feature engineering and
model diagnostics. Strongly correlated features may introduce
multicollinearity if modeled directly without regularization or
dimensionality control. Moreover, the presence of several moderate
or weak linear correlations with the target variable suggests
that linear models may be insufficient to capture the underlying
structure of the data. The implication of this is that even though
this is a binary classification problem, linear models would be
limited in performance as the interaction of most of the features
are not linearly seperable. In contrast, ensemble methods such
as LightGBM and XGBoost are well-suited to exploit complex,
nonlinear, and hierarchical relationships across features [13].
Their ability to model such interactions without extensive feature
engineering further justifies their use in this paper.
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Table 1. : Summary of Financial Dataset Attributes

Feature Name Data Type Description

person age Numerical Age of the borrower
person income Numerical Reported annual income of the borrower

person home ownership Categorical Home ownership status (e.g., rent, own, mortgage)
person emp length Numerical Employment length in years

loan intent Categorical Purpose of the loan (e.g., personal, education, medical)
loan grade Categorical Credit grade assigned to the loan (A to G)
loan amnt Numerical Amount of the loan requested

loan int rate Numerical Interest rate assigned to the loan
loan status Categorical Target variable indicating loan outcome (0 = non-default, 1 = default)

loan percent income Numerical Ratio of loan amount to annual income
person default on file Categorical Indicator of prior default on file

person cred hist length Numerical Length of borrower’s credit history

Term Categorical Duration of the loan (e.g., 36 months, 60 months)
Address State Categorical U.S. state of the borrower’s residence

Debt-to-Income Ratio Numerical Ratio of borrower’s monthly debt payments to income
Revolving Balance Numerical Total credit revolving balance

Total Accounts Numerical Total number of open credit lines
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Fig. 2: Feature correlation heatmap

3.2 Handling missing values and encoding categorical
variables

A few numerical features with missing values, such as
person emp length and loan int rate, were imputed using mean
substitution. Formally, if xi denotes a valid observation, then the
missing entries x̂ are replaced by:

x̂ =
1

n

n∑
i=1

xi (2)

This strategy assumes missing data are random and helps
preserve dataset size without introducing artificial bias. Categorical
features were also transformed into numerical format to enable
compatibility with machine learning algorithms:

(1) Ordinal Encoding: This is applied to loan grade, mapping
credit grades A--G to ordinal integers 0 through 6.

(2) Binary Encoding: Binary features such as those representing
prior default of a loan are converted such that ’Y’ to 1 and ’N’
to 0.

(3) One-Hot Encoding: This is applied to other nominal variables
such as address, loan intent and person home ownership
e.t.c., with one category dropped to prevent multicollinearity.

3.3 Feature scaling and cross validation strategy
All numerical features were standardized to zero mean and unit
variance using z-score normalization:

xscaled =
x− µ

σ
(3)

where µ and σ represent the empirical mean and standard
deviation of the feature, respectively. This ensures that all variables
contribute equally to the model and accelerates convergence during
optimization. To estimate generalization performance and reduce
variance due to random train-test splits, we adopted a 5-fold
stratified cross-validation approach. The dataset is partitioned into
five equal-sized subsets denoted as D1,D2, . . . ,D5, ensuring that
the proportion of default and non-default classes is approximately
preserved in each fold. For each iteration i ∈ {1, 2, 3, 4, 5},
one fold Di is held out as the validation set, and the remaining
four folds

⋃
j ̸=i Dj are used for training. Model performance is

recorded on the held-out fold, and this process is repeated for all
five folds. The final performance metric is computed as the average
across all iterations:

M̄ =
1

5

5∑
i=1

Mi (4)

where Mi denotes the performance metric (e.g., accuracy,
precision) computed on the i-th fold. This stratification guarantees
that each fold reflects the overall class distribution, which is
particularly important for imbalanced datasets and it reduces the
risk of biased model evaluation and improves the robustness of the
comparative analysis across classifiers.
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4. EVALUATION METRICS
To evaluate the performance of the classification models for
credit risk prediction, we adopt both standard and domain-specific
metrics. These include accuracy, precision, recall, and the KS
statistic. Let TP, TN, FP, and FN denote the number of true
positives, true negatives, false positives, and false negatives
respectively.

(1) Accuracy: This measures the proportion of correctly classified
instances among all samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

(2) Precision refers to positive predicted values and it quantifies
the proportion of correctly predicted positive instances out of
all predicted positives:

Precision =
TP

TP + FP
(6)

(3) Recall is used to measure the proportion of actual positives that
are correctly identified:

Recall =
TP

TP + FN
(7)

(4) KS Statistic This is a non-parametric test statistic that
quantifies the maximum distance between the cumulative
distribution functions (CDFs) of the positive and negative
classes. Formally, it can be expressed as:

KS = max
x

|Fpos(x)− Fneg(x)| (8)

where Fpos(x) and Fneg(x) denote the empirical CDFs of the
scores for the positive (default) and negative (non-default)
classes respectively. A higher KS value indicates better
separation between the two distributions and is widely used
in credit scoring to assess model discriminatory power [15].

5. PREDICTION MODELS AND RESULTS
In this paper, we implemented six main classifiers and a variant
of two of the classifiers for further comparison. These statistical
machine learning approaches are well-known with provable
analytical guarantees and have been used across several prediction
tasks in machine learning. We refer the interested reader to
well-cited sources such as [9, 1]. In what follows, we will discuss
each of the prediction algorithm in details with specific choice
of hyper-parameters where applicable. Our proposed workflow is
summarized:

Algorithm 1 Credit Risk Classification Using Ensemble and Linear
Models
Credit dataset D Predicted credit risk labels P
Step 1: Data Preprocessing
1. Handle missing values in numerical features using mean
imputation.
2. Encode categorical variables using ordinal and one-hot
encoding.
3. Standardize features using Z-score normalization.
4. Split dataset into training subset Dtrain (20%) using stratified
sampling.

Step 2: Model Training and Evaluation
5. Evaluate the following models using 5-fold stratified
cross-validation:

(i) Logistic Regression via SGD
(ii) Naive Bayes
(iii) SVM via SGD (hinge loss)
(iv) SGD with Modified Huber Loss
(v) XGBoost
(vi) Random Forest
(vii) LightGBM (baseline)
(viii) LightGBM + PCA
(ix) LightGBM + SMOTEENN
(x) LightGBM + SMOTEENN + PCA

6. Evaluate model performance with defined metrics

5.1 Logistic Regression (SGD classifier)
Logistic regression is a widely used linear classification algorithm
that models the probability of a binary outcome using the
logistic sigmoid function. It is particularly valued for its ease of
implementation, interpretation and probabilistic output [19]. In this
study, we implemented logistic regression using stochastic gradient
descent (SGD), a first-order optimization algorithm well-suited
for large datasets and high-dimensional input spaces. To promote
generalization and mitigate overfitting, L2 regularization is used.
The learning rate was indirectly controlled through a small
regularization parameter with value α = 0.0001. The model was
trained for up to 1000 iterations, which was empirically sufficient
for convergence, and a fixed random seed was used to ensure the
reproducibility of results.

5.2 Naive Bayes (GaussianNB)
The Gaussian Naive Bayes variant assumes that continuous
features follow a normal distribution. This model is fast and serves
as a good benchmark, especially when the assumptions of feature
independence and Gaussian distribution are approximately met.
No manual hyperparameter tuning was applied. Although we did
not formally test for normality, financial features like income
and interest rate are typically right-skewed in practice [14]. The
relatively lower performance of the Naive Bayes model may stem
from violations of its assumption that continuous features are
normally distributed.(see also [18])

5.3 SVM (SGDClassifier with Hinge and Modified
Huber Loss)

SVM was implemented using a linear model optimized through
SGD with hinge loss. L2 regularization helped reduce the risk
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of overfitting, and a small regularization strength α = 0.0001
supported gradual convergence. In order to strike a balance between
the sharp decision boundaries of hinge loss and the stability of
squared loss, we also used the modified Huber loss as an alternative
loss function in this classifier. The modified Huber loss is defined
as:

ℓ(z) =

{
1
2
(1− z)2 if z ≥ −1

−4z if z < −1
where z = y · f(x) (9)

This piecewise formulation offers smooth differentiability,
convexity, and stronger gradients for misclassified samples
compared to the standard hinge loss expressed as
As shown in Figure 3, the modified Huber loss penalizes incorrect
classifications more aggressively when the margin z is confidently
wrong and applies a squared loss when predictions fall within the
decision margin. This makes it robust to label noise and suitable for
large-margin classification in noisy or overlapping class settings.

ℓhinge(z) = max(0, 1− z) (10)

Despite these theoretical advantages, our empirical results indicate
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Fig. 3: Comparison of hinge and modified Huber loss functions.
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Fig. 4: Performance comparison of SGD variants across accuracy, precision,
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that the SGD classifier trained with modified Huber loss yielded the
weakest performance in terms of the KS statistics. This suggests
that the model struggled to cater for the underlying distributional
differences between the classes. This discrepancy stem from

over-sensitivity to outliers andno the inherent smoothness of the
loss not aligning well with the structure of the credit risk data. See
Figure 4.

5.4 Extreme Gradient Boosting (XGBoost)
Gradient Boosting is a powerful ensemble technique that builds
models sequentially, with each new model attempting to correct the
errors made by its predecessors. Unlike bagging methods that train
multiple trees in parallel, gradient boosting focuses on additive
model optimization where learners are trained one after the other
to minimize a loss function.
Formally, given a training dataset {(xi, yi)}Ni=1, the method starts
with an initial model F0(x), and builds the ensemble as:

Fm(x) = Fm−1(x) + γmhm(x) (11)

where hm(x) is the weak learner (typically a shallow decision
tree) trained to predict the negative gradient of the loss function at
iteration m, and γm is the learning rate controlling the contribution
of each learner.

In this study, we have used two extensions of the standard
gradient boosting classifier. XGBoost is an optimized version of
the standard gradient boosting classifier with regularization, tree
pruning, and parallelized training. The model was configured with
100 boosting rounds (n estimators=100), a learning rate of 0.1 to
balance convergence speed and generalization, and a tree depth
of 3 to prevent overfitting. XGBoost delivered strong performance
across all evaluation metrics as presented in Table 2.

5.5 Random Forest Classifier
Random Forest is also an ensemble learning technique that
constructs a multitude of decision trees during training time and
outputs the mode of the classes (classification) or mean prediction
(regression) of the individual trees. It belongs to the family of
bagging methods where multiple base learners are trained in
parallel using different subsets of the training data and features.
Introduced by [3], the Random Forest Classifier combines the
predictive power of many weak learners to form a robust model
that balances data fitting and accuracy. Each tree in the forest is
trained on a bootstrapped sample from the training set, and at
each split in the tree, a random subset of features is considered.
This randomization reduces the correlation among individual trees,
thereby increasing the generalization capability of the ensemble.
Mathematically, let D = {(xi, yi)}Ni=1 be the training dataset,
Random Forest constructs T decision trees {h1, h2, ..., hT }, each
trained on a bootstrap sample Dt drawn from D. At inference time,
the final prediction ŷ is given by majority voting:

ŷ = mode{h1(x), h2(x), ..., hT (x)} (12)

for classification tasks. In the context of credit risk prediction,
Random Forest is particularly useful due to its ability to
handle high-dimensional data and automatically estimate feature
importance. It effectively captures nonlinear relationships between
input variables and the target class (e.g., ‘default‘ or ‘non-default‘).
Furthermore, it is resilient to noisy features and less prone to
overfitting compared to individual decision trees.
In this paper,we have tuned the hyperparameters of the RF via grid
search, including the number of trees, maximum tree depth, and
minimum samples per split.
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Table 2. : Model Evaluation Summary (Metrics by Model)

Model Accuracy Precision Recall KS Statistic

Logistic Regression 0.845 0.685 0.554 0.578
Naive Bayes 0.822 0.579 0.666 0.569
SVM (Hinge Loss) 0.848 0.743 0.474 0.527
SGD (Modified Huber) 0.797 0.571 0.505 0.499
XGBoost 0.932 0.958 0.718 0.723
Random Forest 0.920 0.933 0.681 0.716
LightGBM 0.929 0.945 0.717 0.727
LightGBM + PCA 0.890 0.823 0.629 0.638
LightGBM + SMOTEENN + PCA 0.945 0.949 0.952 0.890
LightGBM + SMOTEENN 0.961 0.979 0.950 0.934

5.6 Light Gradient Boosting Machine (LightGBM)
Unlike XGBoost which uses level-wise tree growth to maintain
balanced trees, LightGBM employs a best-first growth strategy
that allows it to converge faster. It is optimized for speed and
memory efficiency using histogram-based binning and exclusive
feature bundling [8]. The hyperparameters chosen for LightGBM
include 100 estimators, a learning rate of 0.1, and a maximum tree
depth of 6 or 10. These were selected to balance model complexity,
convergence speed, and generalization performance. To investigate
the impact of dimensionality reduction on our credit data, PCA was
applied to reduce the feature space while retaining 95% of variance
of the dataset. Further, given the imbalance between default and
non-default classes, we applied a resampling and class imbalance
method. The SMOTE method generates synthetic samples of the
minority class (in this case, defaulted loans) by interpolating
between existing minority class instances which leads to increase
in their representation in the training set. Also, the use of the ENN
approach here subsequently removes potentially mislabeled or
noisy examples from the majority class to refine the class boundary
[6]. This hybrid method combines over- and under-sampling to
enhance class separability in training data. This was intended
to simplify the model structure without significantly affecting
predictive performance. In addition, we employ SMOTEENN
combined with PCA to investigate if this will result in the highest
KS statistics for our credit data.
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Fig. 5: Performance comparison of LightGBM variants including PCA and
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artificially generated defaulter records raises concerns about the
interpretability and authenticity of the predictions in real-world
applications. In light of this, we adopted a combination of
LightGBM and SMOTEENN without dimensionality reduction to
exploit both robust ensemble learning and hybrid resampling. This
has not been explicitly explored in many prior literature for credit
risk prediction. A comparison of these variants of LightGBM is
given in Figure 5. It is important to note that the integration
of dimensionality reduction and hybrid resampling techniques in
the LightGBM variants could have been extended to the other
ensemble methods for a broader comparison. However, our focus
on LightGBM was motivated by its superior performance, as
the standard LightGBM model already achieved the highest KS
statistic among all evaluated models.

Figure 6 presents a comparative analysis of the KS statistic
across the different classification models. Among the baseline
models, ensemble methods such as XGBoost, Random Forest,
and LightGBM consistently outperformed linear classifiers,
with LightGBM achieving the highest KS score. Notably,
the introduction of SMOTEENN significantly improved the
discriminatory power of LightGBM, as evidenced by the sharp
increase in the KS value. The combination of SMOTEENN and
LightGBM yielded the best result.
Overall, the performance of the models implemented in this paper
is summarized as shown in Table 2. It is also possible to evaluate
the trade-offs between the true positive rate and false positive rate
across our various classification thresholds. This can be done using
the receiver operating characteristic curve (ROC).

As shown in Figure 7, among the models, LightGBM and XGBoost
attained near-perfect classification ability both yielding an Area
Under the Curve (AUC) of 0.98. This is followed closely by
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Random Forest with an AUC of 0.97. These results emphasize
the strength of ensemble-based methods especially boosting
techniques in learning complex nonlinear relationships critical to
credit default classification. Conversely, Logistic Regression and
Naive Bayes achieved moderately high AUC scores. The SGD
classifier with Modified Huber loss, however, registered the lowest
AUC value which indicates a comparatively weaker classification
capacity for highly nonlinear data. These comparative results
validate the superior ability of ensemble learners to distinguish
between creditworthy and non-creditworthy instances.

For our best performing model, Figure 8 shows the confusion
matrix. This hybrid approach yielded an optimal balance
between sensitivity and specificity. These results demonstrate
an exceptionally low number of both false positives and false
negatives, confirming that the model can reliably distinguish
between default and non-default cases. The integration of
SMOTEENN with LightGBM thus enhances the ability to
generalize by addressing class imbalance while preserving decision
boundary clarity.

6. DISCUSSION
This study set out to investigate whether machine learning models
particularly ensemble techniques, can effectively predict credit
default risk from structured loan data. The results clearly indicate
that it is possible to build a model that distinguishes between
borrowers who are likely to default and those who are not, with
high accuracy and stability. In practical terms, our best-performing
model was able to correctly classify over 96% of the test cases,
with precision, recall, and KS statistic values exceeding 0.93. These
metrics suggest not just strong predictive accuracy, but also a good
balance between identifying defaulters and avoiding false alarms.
The AUC of 0.98 further reinforces this, showing that the model
consistently ranks risky borrowers higher than safe ones. In other
words, the model doesn’t just fit the data, it generalizes well across
unseen examples within our cross-validation framework.

Several insights are generalizable beyond the specific dataset
used. First, the integration of hybrid resampling with tree-based
ensemble models is a robust and transferable strategy for handling
imbalanced credit data. Many loan datasets contain far fewer
defaults than non-defaults, and this imbalance often leads to biased
or ineffective models. Our approach demonstrates that applying
SMOTEENN before training an ensemble classifier significantly
improves class separation and model calibration. This insight can
benefit industrial credit scoring projects facing similar imbalance
challenges.

Second, we show that interpretable, non-deep models like
LightGBM and Random Forest can match or exceed the
performance of more complex models. This is especially important
for financial institutions operating under regulatory constraints,
where model transparency is just as critical as accuracy. These
models offer explanations for their decisions and thus enables
credit analysts to trust and validate the outcomes. Further, the
pipeline we developed—combining data preprocessing, stratified
cross-validation, hyperparameter tuning, and diagnostic evaluation
is modular and reproducible. It can be adapted to other types of
credit products or datasets with minimal changes such as small
business lending, peer-to-peer credit, or microfinance platforms.

While we used only one dataset, the consistency of our
results across multiple model variants (e.g., with and without
dimensionality reduction) and metrics suggests that the findings
are robust. Future work could further test this generalizability by
applying the same pipeline to new datasets, including different time
periods or borrower populations.

7. CONCLUSIONS
This paper presented a structured approach to credit risk prediction
using both linear and ensemble-based machine learning models on
a financial institution loan-level data. Through a unified pipeline
comprising preprocessing, feature transformation, model training,
and validation, we comparatively evaluated different algorithms
across standardized metrics including accuracy, precision, recall,
and the KS statistic. Ensemble methods generally outperformed
linear baselines under these evaluation metrics. We demonstrated
the use of dimensionality reduction and hybrid resampling with
ensemble classifiers which have receive limited attention as an
interpretable alternative for handling class imbalance in prior
literature. This approach presents a practical trade-off between
model complexity and performance. The consistency of our result
across multiple model variants and metrics suggests that the
findings are robust and generalizable. In addition to comparative
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benchmarking, we performed ROC analysis and confusion matrix
evaluation to better understand predictive trade-offs and class-level
performance, especially in minority class recall. Future work
could extend this study by using formal optimization methods
for hyperparameter tuning and investigating the stability of the
proposed hybrid pipeline across different datasets and temporal
windows.
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[5] Aslı Demirgüç-Kunt, Enrica Detragiache, and Thierry
Tressel. Banking on the principles: Compliance with basel
core principles and bank soundness. Journal of Financial
Intermediation, 17(4):511–542, 2008.

[6] Gazi Husain, Daniel Nasef, Rejath Jose, Jonathan Mayer,
Molly Bekbolatova, Timothy Devine, and Milan Toma. Smote
vs. smoteenn: A study on the performance of resampling
algorithms for addressing class imbalance in regression
models. Algorithms, 18(1), 2025.

[7] Evangelos Kalapodas and Mary Thomson. Credit risk
assessment: A challenge for financial institutions. IMA
Journal of Management Mathematics, 17, 01 2006.

[8] R. Kavitha, Rupa Shiva Dharshini V, and Priyadharshini M.
Performance comparison of xgboost and lightgbm gradient
boosting algorithms in predicting cervical cancer risk. In 2024
International Conference on Computing and Data Science
(ICCDS), pages 1–6, 2024.

[9] Rakesh Kumar, Meeta Chaudhry, H. K. Patel, Navin
Prakash, Abhinav Dogra, and Sunil Kumar. An analysis
of ensemble machine learning algorithms for breast cancer
detection: Performance and generalization. In 2024 11th
International Conference on Computing for Sustainable
Global Development (INDIACom), pages 366–370, 2024.

[10] Stefan Lessmann, Bart Baesens, Hsin-Vonn Seow, and
Lyn C. Thomas. Benchmarking state-of-the-art classification
algorithms for credit scoring: An update of research.
European Journal of Operational Research, 247(1):124–136,
2015.

[11] Yu Li. Credit risk prediction based on machine learning
methods. In 2019 14th International Conference on Computer
Science & Education (ICCSE), pages 1011–1013. IEEE,
2019.

[12] Yi Liu, Menglong Yang, Yudong Wang, Yongshan Li,
Tiancheng Xiong, and Anzhe Li. Applying machine learning
algorithms to predict default probability in the online
credit market: Evidence from china. International Review of
Financial Analysis, 79:101971, 2022.

[13] V. Z. Marmarelis, D. C. Shin, D. Song, R. E. Hampson, S. A.
Deadwyler, and T. W. Berger. Dynamic nonlinear modeling
of interactions between neuronal ensembles using principal
dynamic modes. In 2011 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pages
3334–3337, Aug 2011.

[14] Mehrdad Naderi, Farzane Hashemi, Andriette Bekker, and
Ahad Jamalizadeh. Modeling right-skewed financial data
streams: A likelihood inference based on the generalized
birnbaum–saunders mixture model. Applied Mathematics and
Computation, 376:125109, 2020.

[15] David Powers and Ailab. Evaluation: From precision, recall
and f-measure to roc, informedness, markedness correlation.
J. Mach. Learn. Technol, 2:2229–3981, 01 2011.

[16] Modisane B. Seitshiro and Seshni Govender. Credit risk
prediction with and without weights of evidence using
quantitative learning models. Cogent Economics & Finance,
12(1):2338971, 2024.

[17] Vandana Sharma, Amit Singh, Ashendra Kumar Saxena,
and Vineet Saxena. A logistic regression based credit
risk assessment using woe bining and enhanced feature
engineering approach anova and chi-square. In 2023 12th
International Conference on System Modeling Advancement
in Research Trends (SMART), pages 499–507, Dec 2023.
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