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ABSTRACT 

Chromosomal aneuploidy, a condition characterized by an 

abnormal number of chromosomes, is a major genetic 

disorder affecting human reproduction, leading to infertility, 

pregnancy loss, and developmental disabilities. Trisomies of 

chromosomes 13, 18, and 21 result in Patau, Edwards, and 

Down syndromes, respectively. While conventional methods 

like karyotyping and QF-PCR facilitate aneuploidy detection, 

they are often time-consuming and limited by genetic 

polymorphism variability. This study introduces an advanced 

AI-driven approach integrating segmental duplication-based 

fluorescence probe analysis with machine learning for 

efficient and accurate aneuploidy detection. Amniotic fluid 

samples were collected from pregnant mothers, and DNA was 

extracted for QF-PCR amplification of segmental duplications 

on target chromosomes. Fluorescence intensity data were 

analyzed using a Python-based computational pipeline 

employing an XGBoost classifier trained on 80% of the 

dataset and tested on the remaining 20%. The model 

demonstrated high accuracy in detecting trisomies 13, 18, and 

21, with results validated against conventional karyotyping as 

the gold standard. Furthermore, the AI-based approach 

successfully predicted fetal gender by computing fluorescence 

intensity ratios of X and Y chromosomes relative to reference 

chromosomes. The automated method significantly reduced 

analysis time from 45 minutes (manual interpretation) to 1.7 

seconds while minimizing human errors. The integration of 

two reference chromosomes for fluorescence normalization 

improved diagnostic precision, reducing false positives and 

negatives. This study highlights the potential of AI-enhanced 

QF-PCR analysis for rapid and reliable prenatal aneuploidy 

screening, paving the way for its implementation in clinical 

diagnostics to enhance reproductive healthcare outcomes. 
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1. INTRODUCTION 
Chromosomal aneuploidy, characterized by an abnormal 

number of chromosomes, is a significant genetic disorder in 

humans with far-reaching implications. It is a common cause 

of infertility, occurring in approximately 15% of couples 

trying to conceive [1]. Aneuploidy is also the leading cause of 

pregnancy loss and developmental disabilities, with over 25% 

of all miscarriages being monosomic ortrisomic [2]. 

Furthermore, it is present in an estimated 10-30% of all 

fertilized eggs, making it a major factor in human 

reproduction and development [2]. Interestingly, the 

consequences of aneuploidy are not always straightforward. 

While it is generally detrimental, some studies have shown 

that aneuploid embryos can serve as a source for both normal 

euploid and aneuploid human embryonic stem cell (hESC) 

lines [3]. These cell lines can be invaluable tools for studying 

developmental aspects of chromosomal abnormalities in 

humans. Additionally, in the context of cancer, aneuploidy 

has been found to have a complex relationship with 

tumorigenesis. Despite its frequency in human tumors, 

aneuploidy is not always a driver of cancer development and 

can even exert tumor-suppressive effects in some cases [4].  

Aneuploidy in chromosomes 13, 18, and 21 results in Patau 

syndrome, Edwards syndrome, and Down syndrome, 

respectively. These are the only full autosomal trisomies 

compatible with postnatal survival [5]. The mechanisms 

underlying the disruption of normal development and specific 

phenotypes in these syndromes are not fully understood, but 

research suggests a combination of gene dosage effects and 

genome-wide transcriptional dysregulation [5], [6]. 

Interestingly, the transcriptional changes vary among the 

different trisomies. In trisomy 21, a subset of chromosome 21 

genes, including DSCR1 involved in fatal heart development, 

shows consistent up-regulation, while trisomy 18 exhibits 

more extensive downstream transcriptional changes [5]. 

Additionally, aneuploidy-associated phenotypes, such as 

lower viability and increased dependency on serine-driven 

lipid synthesis, are present in trisomy 21 cells, independent of 

the identity of the triplicated genes [6].  
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QF-PCR offers a rapid, precise, and automated method 

capable of handling 96 samples in less than 48 hours. 

Nonetheless, its drawback lies in the variability of genetic 

polymorphisms among different populations, which limits its 

universal applicability [7], [8], [9]. On the other hand, MLPA 

is a validated technique for identifying changes in genomic 

copy numbers and is used in aneuploidy analysis. However, it 

involves an overnight hybridization step, which makes the 

process time-consuming and complex to develop [10], [11]. 

Segmental duplications play a crucial role in detecting human 

chromosomal aneuploidy and other structural abnormalities. 

These duplications are regions of DNA that are repeated 

within the genome and can serve as markers for identifying 

chromosomal aberrations [12].  

In this study, the concept of segmental duplication was 

exploited to integrate it with a fragment analysis protocol 

running on a genetic analyzer, where relative dosage is 

computed after comparing the signal generated from the target 

chromosome with that of two reference chromosomes [13]. 

Python-based code was utilized to analyze QF-PCR data for 

human aneuploidy. To automate data interpretation, a model 

was trained on 70% of the dataset and tested on the remaining 

30%, ensuring robust validation of the analytical approach. 

This computational framework enhances the efficiency and 

accuracy of aneuploidy detection, minimizing manual errors 

and improving reproducibility. 

2. MATERIAL AND METHODS  

2.1 Clinical Samples and DNA Extraction 
Clinical samples comprised amniocentesis fluid collected 

from pregnant mothers. DNA was extracted using the 

QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) at a 

NABL-accredited laboratory (ISO 15189:2022 for medical 

testing). All extracted DNA samples were stored at −20°C 

until further processing. The quality and quantity of the 

extracted DNA were assessed using a NanoDrop 

spectrophotometer (NanoDrop™ 2000, Thermo Fisher 

Scientific, USA), measuring absorbance at 260 nm and 280 

nm to determine purity and concentration. 

2.2PCR Amplification and Fragment 

Analysis 
Approximately 50 ng of DNA extracted from amniocentesis 

fluid from each patient was used to set up a PCR reaction. The 

reaction was performed in a 25 µL volume containing 1X 

PCR buffer, 200µM dNTPs, 1.5 mM MgCl₂ , 0.5 U Taq DNA 

polymerase (Thermo Fisher Scientific, USA), and 0.2 µM 

each of forward and reverse primers, where the forward 

primer was fluorescently labeled. PCR was carried out under 

the following conditions: initial denaturation at 95°C for 5 

minutes, followed by 35 cycles of denaturation at 95°C for 30 

seconds, annealing at an optimized temperature (specific to 

primers) for 30 seconds, and extension at 72°C for 30 

seconds, with a final extension at 72°C for 7 minutes. The 

PCR products were analyzed using a 3500 Genetic Analyzer 

(Applied Biosystems, USA), and fragment analysis was 

performed using GeneMapper software v6.0 (Thermo Fisher 

Scientific, USA). The sequences of the PCR primers were as 

described by [13]. The primers enabled the simultaneous 

detection of aneuploidies. Two independent primer sets 

(targeting two segmental duplications per chromosome) were 

employed. Each primer pair included one unlabeled primer 

and one labeled with FAM (6-carboxyfluorescein). All PCR 

primers were synthesized and purified by Thermo Fisher 

Scientific, India.  

2.3 Computational Analysis and Machine 

Learning Implementation 
Fluorescence intensity data obtained from experimental assays 

were processed using a Python-based computational pipeline. 

The dataset, stored in CSV format, contained fluorescence 

intensity values for target chromosomes (16, 18, 21, X, Y) and 

reference chromosomes, along with labels indicating 

chromosomal aneuploidy status. Preprocessing was performed 

using pandas and numpy, including data inspection, 

categorical label encoding viaLabelEncoder, and 

normalization of fluorescence intensity values. The dataset 

was partitioned into training (80%) and testing (20%) subsets 

using train_test_split from scikit-learn to ensure unbiased 

model evaluation. 

For automated classification, an XGBoost classifier was 

implemented, leveraging its gradient boosting framework for 

efficient learning. The model was initialized with a 

multi:softmax objective for multiclass classification, mlogloss 

as the evaluation metric, and five output classes 

corresponding to chromosomal categories. Training was 

conducted using fluorescence intensity features as predictors 

and encoded chromosome labels as targets. The fit method of 

XGBClassifier was applied to train the model on the prepared 

dataset. Model predictions were obtained using predict on the 

test subset, and performance evaluation was carried out using 

classification reports (classification_report) and ROC-AUC 

scores (roc_auc_score) with a one-vs-rest (OVR) approach. 

Additionally, fluorescence intensity ratios of chromosomes X 

and Y relative to a reference chromosome were computed to 

predict fetal gender. These ratios were incorporated as model 

features, allowing the AI-driven classifier to distinguish 

between male and female samples. The entire workflow, 

including dataset handling, feature engineering, model 

training, and evaluation, was executed within a Python 

environment utilizing pandas, numpy, xgboost, and sklearn 

for efficient machine learning-based analysis. All relevant 

artifacts, including datasets in Google Sheets format and 

Python code as Colab notebooks, were compiled in a Cloud 

Storage folder for access and sharing. 

2.4 Gold Standard Confirmation 
Karyotyping was performed as the gold standard for 

confirming trisomy in chromosomes 13, 18, and 21. 

Peripheral blood samples were cultured in RPMI-1640 

medium supplemented with fetal bovine serum and 

phytohemagglutinin for 72 hours. Metaphase chromosomes 

were arrested using colchicine, followed by hypotonic 

treatment and fixation with methanol-acetic acid. 

Chromosomal spreads were stained with Giemsa and analyzed 

under a light microscope. Karyotypes were classified 

according to ISCN guidelines, and trisomy cases identified via 

QF-PCR were cross-validated against karyotyping results to 

ensure diagnostic accuracy. 

2.5 Ethics Statement 
This study was approved by the Wobble Base Bioresearch 

Ethics Committee (Approval No. WBBPL/EC/Jan2005/002) 

and conducted in accordance with the ethical guidelines 

outlined in the Declaration of Helsinki. Written informed 

consent was obtained from all participants or their legal 

guardians prior to sample collection and analysis. 
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2.6 Age Statement 
The participants in this study ranged in age from 18 to 49 

years, ensuring inclusion of reproductive-age women. Age 

data are presented in five-year range intervals to maintain 

confidentiality. 

3. RESULTS 
For each sample, data were collected from one or more of the 

five target chromosomes: 13, 18, 21, X, and Y. In samples 

where both the X and Y chromosomes were analyzed, the 

genetic sex was predicted. Each target chromosome was 

analyzed in parallel with a pair of reference chromosomes to 

ensure accurate comparison. The reference chromosomes used 

were as follows: Chromosome 21 with Chromosomes 11 and 

6, Chromosome 18 with Chromosomes 10 and 1, 

Chromosome 13 with Chromosomes 11 and 9, Chromosome 

Y with Chromosome X, and Chromosome X with 

Chromosomes 3 and 18. The data capture value was 

determined based on the fluorescent peak obtained from the 

GeneMapper software.  

The table provided in the supplement data section (Table 

(Supplement data).) presents details of the total number of 

clinical samples processed and the distribution of samples 

tested for specific chromosomal aneuploidies, including 

trisomy 21 (Down syndrome), trisomy 18 (Edwards 

syndrome), and trisomy 13 (Patau syndrome). The numbers 

indicate samples tested for each trisomy individually or in 

combination with other trisomies. Data interpretation was 

conducted using a Python-based machine learning algorithm 

for automated analysis, with standard karyotyping serving as 

the gold standard for validation. 

Table 1 presents the distribution of samples processed and 

tested for chromosomal aneuploidies. A total of 142 samples 

were analyzed, with 139 tested for trisomy 21 (Down 

syndrome), 95 for trisomy 18 (Edwards syndrome), and 93 for 

trisomy 13 (Patau syndrome), either individually or in 

combination with other trisomies. Additionally, 92 samples 

underwent comprehensive chromosomal analysis. Data 

interpretation was conducted using a Python-based artificial 

intelligence (AI) algorithm, with standard karyotyping serving 

as the gold standard for validation. 

Table 1. Summary of Sample Testing for Chromosomal 

Aneuploidy 

Description Count 

Total number of samples processed 142 

Number of samples tested for trisomy 21 

(alone or along with trisomy 13 and/or 

18) 

139 

Number of samples tested for trisomy 18 

(alone or along with trisomy 13 and/or 

21) 

95 

Number of samples tested for trisomy 13 

(alone or along with trisomy 18 and/or 

21) 

93 

Number of samples tested for all the 

chromosomes 
92 

 

In Table 2, a comparative analysis of chromosomal 

aneuploidy detection using an AI-based interpretation method 

versus conventional karyotyping is presented. The Count (AI) 

column represents the number of samples identified as 

positive for trisomy 21, trisomy 18, and trisomy 13 by the 

Python-based AI process, while the Count (Gold standard) 

column indicates the corresponding results obtained through 

standard karyotyping. Discrepancies, if any, highlight 

potential variations in detection sensitivity between the bench 

data driven AI-based approach and the established cytogenetic 

method. 

Table 2. Comparison of AI-Based Interpretation and Gold 

Standard Karyotyping for Trisomy Detection 

Description 
Count 

(AI) 

Count 

(Gold 

standard) 

Number of samples found 

positive for trisomy 21 
12 13 

Number of samples found 

positive for trisomy 18 
3 3 

Number of samples found 

positive for trisomy 13 
0 0 

AI: Artificial Intelligence 

Table 3 summarizes the determination of gender 

chromosomes in 92 processed samples using an AI-based 

interpretation method and conventional karyotyping. The 

Count (AI) column represents the classification results from 

the Python-based AI process, while the Count (Gold standard) 

column indicates the corresponding results obtained through 

standard karyotyping. Both methods yielded identical 

classifications, with 43 samples identified as male and 49 as 

female, demonstrating concordance between AI-based 

analysis and cytogenetic evaluation. 

Table 3. AI-Based Interpretation and Gold Standard 

Karyotyping for Gender Chromosome Determination. 

Description 
Count 

(AI) 

Count 

(Gold 

standard) 

Total number of samples 

processed for determining 

the gender chromosomes 

92 92 

Number of male samples  43 43 

Number of female samples  49 49 

 

The machine learning approach completed the analysis in 1.7 

seconds, compared to the 45 minutes required for manual 

analysis. Notably, the AI-based method successfully detected 

and accurately highlighted an error originating from a bench-

level variable, which might have been overlooked in manual 

interpretation. 

As mentioned above, this study utilized an AI-driven 

approach to analyze trisomy-related fluorescence PCR data. 

Fluorescence intensity ratios were computed for chromosomes 

X and Y relative to a reference chromosome to predict fetal 

gender. These ratios were integrated as model features, 

enabling the classifier to distinguish between male and female 

samples. The entire workflow—spanning dataset 

preprocessing, feature extraction, model training, and 

evaluation—was conducted in a Python environment using 

pandas, numpy, xgboost, and sklearn, ensuring efficient 

machine learning-based analysis.  
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4. DISCUSSION 
Detecting trisomy in pregnant mothers is crucial for several 

reasons: Trisomy 21 (Down syndrome) is the most common 

reason women opt for prenatal diagnosis [14]. Early detection 

allows parents to make informed decisions about pregnancy 

management and prepare for potential medical needs. 

Conventional invasive methods like amniocentesis carry risks, 

driving the development of noninvasive techniques [15], [14]. 

Interestingly, while trisomy screening has advanced 

significantly, some studies show that a small percentage of 

parents choose to continue pregnancies even after trisomy 

diagnosis. For instance, 12% of couples continued 

pregnancies after confirming trisomy 13 or 18 diagnoses [16]. 

In summary, trisomy detection enables early intervention, 

informed decision-making, and preparation for potential 

medical needs. The development of noninvasive prenatal 

testing (NIPT) has made screening more accessible and safer, 

allowing for earlier and more widespread detection of 

chromosomal abnormalities during pregnancy. This study 

attempted an important technological advancement relevant to 

a prominent health condition in pregnant females. 

Segmental duplications can be used as a tool for detecting 

trisomy, a chromosomal abnormality where an extra copy of a 

chromosome is present. Array comparative genomic 

hybridization (CGH) is a technique that can detect these 

duplications and, by extension,trisomy [15]. This method 

compares the DNA of a test sample against a reference 

genome, allowing for the identification of copy number 

variations, including large-scale duplications characteristic of 

trisomy. Interestingly, segmental duplications themselves can 

lead to chromosomal rearrangements and copy number 

variations. For instance, in Charcot-Marie-Tooth disease type 

1A, a segmental duplication on chromosome 17p is linked to 

the condition [17]. This highlights the dual nature of 

segmental duplications – they can be both a cause of genomic 

variation and a tool for detecting it. While segmental 

duplications can be used to detect trisomy through techniques 

like array CGH, they also play a complex role in genome 

evolution and disease. The study of these duplications 

provides insights into chromosomal abnormalities and 

genomic variation [15]. In this study, segmental duplication 

was strategically used to detect chromosome dosage in target 

chromosomes (Chromosomes 13, 18, and 21) using 

fluorescence probes, endpoint PCR, and fragment analysis on 

a genetic analyzer.  

In this study, the use of two reference chromosomes for 

determining the dosage of target chromosomes 

(Chromosomes 13, 18, and 21) in segmental duplication-

based fluorescence probe analysis and fragment analysis using 

a genetic analyzer provided several advantages. Incorporating 

two references improved accuracy by offering a stable 

baseline for comparison, minimizing the impact of 

experimental variability. This approach also reduced the risk 

of false positives and negatives, as reliance on a single 

reference could introduce bias due to amplification 

inconsistencies. By normalizing fluorescence intensity 

variations, the use of dual reference chromosomes ensured 

greater consistency in dosage assessment. Additionally, this 

strategy enhanced the statistical confidence in detecting 

trisomy conditions, particularly in borderline cases. The 

inclusion of two references also mitigated potential errors 

arising from undetected structural variations or aneuploidy in 

a single reference chromosome. Furthermore, in fluorescence-

based fragment analysis, dual references provided refined 

calibration, improving the distinction between normal and 

trisomic samples.  

Python-based environments are widely used for biological 

data analysis, from dataset preprocessing and feature 

engineering to model training and evaluation. This approach 

offers several advantages in handling complex biological 

datasets. Data preprocessing and feature engineering are 

crucial steps in biological data analysis. For instance, in 

microbiome data analysis, compositional transformations and 

filtering methods are often employed, although their impact 

on predictive performance can vary [18]. In the context of 

high-dimensional biological datasets, feature selection 

techniques like the Statistically Equivalent Signatures 

algorithm have proven effective in reducing classification 

errors [18]. For biological feature selection, metaheuristic 

algorithms such as the general learning equilibrium optimizer 

(GLEO) have shown excellent performance in identifying 

informative features among a large number of attributes [19]. 

Interestingly, some studies have found that certain 

preprocessing techniques may not always improve model 

performance. For example, in microbiome data analysis, the 

use of compositional transformations and filtering methods 

did not consistently enhance predictive performance [18]. 

This highlights the importance of carefully evaluating 

preprocessing steps in the context of specific biological 

datasets and research questions. Python-based environments 

hence offer powerful tools for biological data analysis, from 

preprocessing to model evaluation. The choice of 

preprocessing techniques and feature selection methods 

should be tailored to the specific characteristics of the 

biological dataset and the research objectives. Techniques like 

multivariate feature selection and metaheuristic algorithms 

have shown promise in improving model performance and 

biological insights[18], [19]. However, it's crucial to critically 

evaluate the impact of preprocessing steps on model 

performance and biological interpretability. 

The samples originated from a standard genetic testing 

laboratory, where the choice of the trisomy detection protocol 

was driven by the specific research and development program 

underway, as per organizational requirements. This resulted in 

heterogeneity in the testing approach, with some samples 

being analyzed for all three target chromosomes (21, 18, and 

13), while others were tested for only one or two of these 

trisomies. 

Trisomy 21 is the most common chromosomal disorder 

among live births. It occurs in approximately 1 in 700 to 1 in 

1,000 live births worldwide [20]. This genetic condition 

results from the presence of an extra copy of chromosome 21, 

leading to various developmental abnormalities and 

intellectual disability.Interestingly, while maternal age is the 

primary risk factor for trisomy 21, recent studies have shown 

that paternal age and epigenetic factors also play a role in its 

occurrence [20].Additionally, research has revealed that in 

prenatal diagnoses, the paternal origin of trisomy 21 is more 

frequent (10.8%) than previously thought based on studies of 

liveborn infants (6.7%) (Muller et al., 2000). This suggests a 

potential impact of fetal death on the observed frequencies of 

parental origin in trisomy 21 cases. In conclusion, trisomy 21 

remains the most prevalent chromosomal abnormality, with its 

abundance attributed to various factors including parental age 

and epigenetic influences. The discrepancy in paternal origin 

frequencies between prenatal and postnatal studies highlights 

the complexity of this condition and the need for further 

research to fully understand its etiology and prevalence 

patterns. Our study corroborates this observation, as trisomy 
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21 was found to be the most prevalent among the three target 

chromosomes investigated in this study, namely chromosomes 

13, 18, and 21. 

In our study, the segmental duplication-based approach for 

fetal gender determination demonstrated perfect accuracy. The 

dosage obtained from the X and Y chromosomes in male 

fetuses, as well as the dosage derived from a pair of X 

chromosomes in female fetuses, when analyzed against 

reference chromosomes, reliably identified fetal gender.  

This study leveraged an AI-driven approach to analyze 

fluorescence PCR data related to trisomy detection, 

incorporating fluorescence intensity ratios of chromosomes X 

and Y relative to a reference chromosome for fetal gender 

prediction. By integrating these ratios as model features, the 

classifier effectively distinguished between male and female 

samples. The entire computational pipeline—from dataset 

preprocessing and feature extraction to model training and 

evaluation—was implemented in a Python-based environment 

using pandas, numpy, xgboost, and sklearn, ensuring a 

streamlined and efficient analysis. Notably, the AI-based 

method achieved an approximately 1,588-fold improvement 

in processing speed compared to manual 

analysis,underscoring its superiority in handling large-scale 

genomic datasets with enhanced accuracy and minimal human 

intervention.  

5. CONCLUSION 
This study demonstrates the efficacy of an AI-driven approach 

for trisomy detection and fetal gender prediction using 

fluorescence PCR data. By integrating machine learning 

techniques with fluorescence intensity ratio analysis and dual-

reference chromosome normalization, the method achieved 

superior accuracy and significantly reduced processing time 

compared to manual analysis. The use of Python-based 

computational frameworks enabled efficient data 

preprocessing, feature selection, and model evaluation, 

highlighting the power of AI in genomic diagnostics. These 

findings emphasize the potential of AI-assisted noninvasive 

prenatal testing (NIPT) to improve trisomy screening, enhance 

diagnostic confidence, and expand accessibility to early 

genetic risk assessment in prenatal care. Future advancements 

in AI-driven genomic analysis may further refine detection 

accuracy and broaden applications in precision medicine. 
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