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ABSTRACT 
The ability to recognize and interpret facial emotions is a 

critical component of human communication, as it allows 

individuals to understand and respond to emotions conveyed 

through facial expressions and vocal tones. The recognition of 

facial emotions is a complex cognitive process that involves the 

integration of visual and auditory information, as well as prior 

knowledge and social cues. It plays a crucial role in social 

interaction, affective processing, and empathy, and is an 

important aspect of many realworld applications, including 

human-computer interaction, virtual assistants, and mental 

health diagnosis and treatment. The development of accurate 

and efficient models for facial emotion recognition is therefore 

of great importance and has the potential to have a significant 

impact on various fields of study.The field of Facial Emotion 

Recognition (FER) is of great significance in the areas of 

computer vision and artificial intelligence, with vast 

commercial and academic potential in fields such as security, 

advertising, and entertainment. We propose a FER framework 

that employs Swin Vision Transformers (SwinT) and squeeze 

and excitation block (SE) to address vision tasks. The approach 

uses a transformer model with an attention mechanism, SE, and 

SAM to improve the efficiency of the model, as transformers 

often require a large amount of data. Our focus was to create 

an efficient FER model based on SwinT architecture that can 

recognize facial emotions using minimal data. We trained our 

model on a hybrid dataset and evaluated its performance on the 

AffectNet dataset, achieving an F1-score of 0.5420, which 

surpassed the winner of the Affective Behavior Analysis in the 

Wild (ABAW) Competition held at the European Conference 

on Computer Vision (ECCV) 2022 [10]. 

Keywords 
SAM, Swin-T, Squeeze and Excitation, Emotion Recognition 

1. INTRODUCTION 
Facial Emotion Recognition (FER) is one of the major areas of 

research. (FER) is a field of study in computer vision and 

artificial intelligence that focuses on the detection and 

interpretation of emotions expressed through facial 

expressions. FER technology uses computer algorithms to 

analyze images or videos of faces and identify emotions such 

as happiness, sadness, anger, fear, surprise, and disgust. FER 

has the potential to impact a wide range of applications, 

including psychology and neuroscience research, marketing, 

human-computer interaction, and security. In psychology and 

neuroscience, FER can help researchers better understand the 

emotions that drive human behavior. In marketing, FER can be 

used to gauge consumer emotions and preferences. In human-

computer interaction, FER can be used to create more natural 

and intuitive interfaces that respond to human emotions. In 

security, FER can be used for authentication, surveillance, and 

emotional profiling. Faces analysis indicates recognizing the 

angle and expression of a human being independently of the 

immersive environment it could be, and ambiguous emotions 

are the cornerstone of the problem. Understanding human 

emotion also plays a vital role in emotional intelligence. Facial 

expression is a primal, impactful, and ubiquitous means by 

which humans communicate their feelings and motives. The 

intricate and nuanced movements of facial muscles, even the 

most subtle changes, can convey a range of emotions that are 

universally understood and instinctively recognized by people 

from all cultures and backgrounds. From joy and sadness to 

anger and fear, facial expressions serve as a fundamental tool 

for human interaction and are a crucial component of nonverbal 

communication. [4, 16]. We seek to analyze how the Swin 

transformer (Swin-T) performs on this task, comparing our 

model with the stateof-art models on hybrid datasets, taking 

into account the lack of inductive bias proper for Vision 

Transformer (ViT). ViT is a transformer-based architecture for 

computer vision tasks such as image classification, 

segmentation, and object detection. The paper [6] demonstrates 

that ViT out-performs existing state-of-the-art models on 

several benchmark datasets, and provides insights into how the 

architecture works and why it is effective. It uses self-attention 

mechanisms to dynamically attend to essential regions in an 

image, allowing them to capture complex relationships 

between objects. Using transformers for image recognition 

makes it possible to achieve strong results on image recognition 

tasks while using less memory and computational resources 

than traditional CNN. We offer an overview of the following 

aspects: 

• Data composition: Understanding the data 

composition of different datasets with high data 

variables, and merging them into a unique dataset. 

• Data integration: Integrating data from various 

sources to create a unified dataset. 

• Data analysis: Analyzing the features of each subset of 

data, including some attributes and metadata to 

change for normalized samples. 

• Data preprocessing: Preparing the data for 

manipulation and augmentation, including 

techniques such as normalization, scaling, and 

augmentation. 

• Dataset split: Splitting the dataset into three subsets 

with some common features, such as image format, 

size, and the number of channels. 

• Face detection and cropping: Configuring models for 

face detection and cropping procedures. 

• Model evaluation: Assessing the outcomes of models 

through the utilization of diverse performance 

metrics, including accuracy, precision, recall, and F1-

score, is a critical aspect of evaluating their 

effectiveness. 

• Results analysis: Analyzing the results of the models 

to understand the strengths and weaknesses of the 

transformers for Facial Emotion Recognition. 
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In this work, we presented a Facial Emotion Recognition (FER) 

framework in this work. Our approach is based on SwinT and 

squeeze and excitation block (SE). To develop an efficient FER 

model with the ability to detect facial emotions using a small 

amount of data, we utilized a transformer model with an 

attention mechanism and a sharpness-aware minimizer (SAM). 

Additionally, we made a unique contribution by using a hybrid 

dataset for training and evaluating the model’s performance on 

the AffectNet dataset, achieving an F1-score of 0.5420. The 

effectiveness of our approach was demonstrated by 

outperforming the winner of the Affective Behavior Analysis 

in-the-wild (ABAW) Competition held in conjunction with the 

European Conference on Computer Vision (ECCV) 2022. 1 

 

2. RELATED WORKS 
Deng et al. [5] suggested a technique for multi-task learning in 

the presence of missing labels. To balance the dataset, they 

proposed a method that utilized the ground truth labels of all 

three tasks to train a teacher model and then used the output of 

the teacher model as soft labels for the student model. They 

used both the soft labels and the ground truth labels to train the 

student model. 

Kuhnke and Rumberg et al. [11] proposed a two-stream model 

that incorporated audio and image streams. They fed these 

streams separately into a CNN network, then utilized temporal 

convolutions on the image stream. Additionally, they utilized 

facial alignment and correlations between different emotional 

representations to improve their model’s performance. 

Thinh et al. [3] introduced a deep learning model that used 

ResNet50 [8] as its backbone, with pre-trained weights from 

ImageNet [5]. They employed VGGFace2 for emotion 

recognition, aiming to speed up and enhance the training 

process. 

Zhang et al. [18] proposed a method for multi-task emotion 

recognition that takes into account the intrinsic association 

between the different emotional representations. They noted 

that despite the different psychological philosophies behind 

these representations, there is evidence that they are linked to 

each other. For example, similar facial muscle movements 

(action units) tend to indicate similar emotions, and most 

previous works on multi-task emotion recognition have ignored 

this fact by modeling different tasks in parallel branches. The 

proposed method instead uses a streaming structure to model 

the recognition process serially, going from local action units 

to global emotion states, and adjusting the hierarchical 

distributions on different feature levels. This approach is 

designed to better capture the interdependent relationships 

between the different emotional representations. 

DAN, a facial recognition model introduced by Wen et al. [17], 

comprises three key components: Feature Clustering Network 

(FCN), Multi-head cross Attention Network (MAN), and 

Attention Fusion Network (AFN). FCN is responsible for 

feature extraction using a large-margin learning approach to 

maximize class separability. MAN, on the other hand, utilizes 

several attention heads to attend to multiple facial areas 

simultaneously, building an attention map for these regions. 

Finally, AFN combines the attention maps by distracting 

attention to multiple locations before fusing them into a 

comprehensive map. 

The current state-of-the-art approach for emotion recognition 

using the AffectNet dataset was proposed by Andrey et al. [15]. 

Their method involves applying face detection, tracking, and 

clustering techniques to extract face sequences from each 

frame. Subsequently, a single neural network is used to extract 

emotional features from each frame. 

3. METHODOLOGY 
Figure 1 Depicts our framework. The proposed architecture for 

facial emotion recognition utilizes a SwinT model augmented 

with a SE layer before the Swin Transformer. Swin 

Transformer, also known as SwinT, is a hierarchical 

Transformer that computes image representation using Shifted 

windows, allowing for cross-window connection and efficient 

self-attention computation. This hierarchical approach permits 

modeling at various scales while maintaining linear 

computational complexity with respect to image size. The 

model’s primary task is to predict basic facial emotions, and the 

inclusion of the SE layer enhances its robustness, maximizing 

intra-distance between clusters. The shifted windowing scheme 

increases computational efficiency by limiting self-attention 

computation to non-overlapping local windows, resulting in 

greater speed and scalability for large datasets. 

3.1 Swin Transformer 
In recent years, the Transformer architecture has gained 

widespread recognition and adoption in the field of machine 

learning, especially in Natural Language Processing (NLP). 

Introduced in 2017, the Transformer architecture has 

revolutionized the way in which sequence-to-sequence tasks 

are performed. Prior to this, recurrent neural networks (RNNs) 

were commonly used for sequence tasks, but the Transformer 

architecture offered a more efficient and parallelizable solution. 

Vision Transformer(ViT), a variant of the Transformer 

architecture that emerged in 2020, has revolutionized computer 

vision tasks, particularly image recognition, by offering a fresh 

approach to conventional models that utilize convolutional 

neural networks (CNNs). ViT leverages self-attention 

mechanisms instead of convolutions, enabling the network to 

dynamically focus on critical regions within an image. 

Impressively, ViT has achieved remarkable outcomes in 

various image recognition tasks, surpassing traditional CNNs 

while utilizing fewer memory and computational resources. 

By harnessing vision transformers as presented in (2021) et al. 

[12](2021), we have successfully classified eight human 

emotions, including anger, contempt, disgust, fear, happiness, 

neutral, sadness, and surprise, by finetuning a pre-trained 

ImageNet model. The attention mechanism plays a crucial role 

in this model by extracting vital features from the input through 

a standard query, key, and value structure. The similarity 

between queries and keys is established through matrix 

multiplication, followed by the application of the softmax 

function to the outcome, resulting in the ’attention’ mechanism. 

Our transformer architecture comprises eleven encoders 

stacked on top of a hybrid patch embedding architecture. Our 

approach overcomes the lack of an inductive bias problem, 

which is a concern in Vision Transformers as they have 

significantly fewer image-specific inductive biases than CNNs. 

Swin Transformer (SwinT), an avant-garde architecture 

tailored for computer vision, represents a novel amalgamation 
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of two robust models, Convolutional Neural Networks (CNNs) 

and Transformers, combining their unparalleled strengths to 

create a powerhouse of a model. SwinT surpasses the previous 

state-of-the-art Vision Transformers (ViT) by introducing a 

multi-scale approach that effectively captures both local and 

global features with exceptional precision, making it an 

unparalleled choice for complex computer vision tasks that 

necessitate a fine-grained and global understanding of visual 

data. SwinT’s innovative integration of these models not only 

facilitates efficient and accurate image recognition but also 

significantly reduces computational costs. 

The SwinT architecture is a combination of convolutional and 

self-attention mechanisms, with a unique switching mechanism 

that enables it to capture fine-grained details and high-level 

semantic information in images. Its impressive performance in 

various computer vision benchmarks suggests its potential for 

driving further progress in the field. 

To construct a SwinT block, the multi-head self-attention 

(MSA) module in a Transformer block is replaced with a 

shifted window-based MSA module. This module is followed 

by a 2-layer MLP with GELU nonlinearity in between. Each 

MSA module and MLP is preceded by a LayerNorm (LN) 

layer, and a residual connection is applied after each module. 

The input RGB image is divided into non-overlapping patches 

using a patch-splitting module, and each patch is treated as a 

token. The feature of each patch is constructed by 

concatenating the raw pixel RGB values, resulting in a patch 

dimension of 48, accounting for the 3 channels of a 4 × 4 patch. 

A linear embedding layer is applied to this raw-valued feature 

to project it to an arbitrary dimension C. This hierarchical 

architecture has linear computational complexity with respect 

to image size and is flexible enough to model at various scales. 

The SwinT block’s unique combination of convolutions and 

self-attention mechanisms has shown great promise in various 

computer vision tasks, such as image classification and object 

detection. With its shifted window-based MSA module, it has 

the potential to outperform other state-of-theart models in the 

field. 

 
Figure 1. Facial Emotion Detection using SwinT with SE Block 

3.2 Datasets 
During the development of our robust model, we encountered 

a significant obstacle the scarcity of sufficient data. Many 

datasets, often accessible only for research purposes, remain 

out of reach for students, limiting the amount of data we could 

use. We resorted to using open-source data platforms such as 

Kaggle, which provided some samples but fell short of the 

amount required for effective training of transformers. To 

address this challenge, we devised a plan to augment the limited 

data using various techniques, thereby increasing the size of the 

final datasets. 

Our approach involved utilizing several datasets, each with its 

unique set of characteristics and limitations. The FER-2013 

dataset, for example, contained around 40,000 facial RGB 

images with varying expressions, restricted to 

a size of 48 × 48. The dataset labels were classified into seven 

primary types, including Fear, Sadness, Happy, Anger, Disgust, 

Surprise, and Neutral. We observed a significant imbalance in 

the data across the different expression categories, with Disgust 

expression having only 600 samples, whereas the remaining 

labels had almost 5,000 samples each. 
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Another dataset we used was the CK+ dataset, an extended 

version of the Cohn-Kanade dataset. It contained images from 

593 video sequences of 123 different subjects with diverse 

genders and heritages, ranging from 18 to 50 years old. Each 

video sequence depicted a facial transition from a neutral 

expression to a specific peak expression, recorded at 30 frames 

per second (FPS) and with resolutions of either 640 × 490 or 

640 × 480 pixels. However, we could only access a portion of 

the complete dataset, containing 1000 images with high 

variability obtained from a Kaggle repository, highlighting the 

challenge of limited data availability. 

Lastly, we also used the AffectNet dataset, which consists of an 

extensive collection of 60,000 facial expression images 

classified into eight different classes, including neutral, happy, 

angry, sad, fear, surprise, disgust, and contempt. The dataset 

also includes intensity measures of valence and arousal 

associated with each expression, adding an extra layer of 

complexity and providing additional information for the model 

to learn from. 

In conclusion, despite the limited availability of data, we 

employed various techniques to augment the samples we had, 

utilizing multiple datasets with their unique characteristics and 

limitations. This enabled us to increase the size of the final 

datasets and train a robust model that could accurately classify 

facial expressions. 

With each dataset focusing on RGB channels for coloring and 

having different sizes and image extensions, the overall data 

size amounts to approximately 2 GB. To handle this diverse 

dataset, it is imperative to establish a standard format that 

allows for efficient management of the data. Consequently, we 

implemented various fine-tuning techniques, as described in 

the preprocessing section, to manage the data effectively and 

ensure the optimal performance of the model. 

 

Figure 2. Class-level sub-population statistics for the final 

dataset after balancing 

3.3 reprocessing 
During the data collection phase of our project, we sourced data 

from multiple sources and amalgamated them to create a 

dataset. However, we found that the dataset was imbalanced as 

the training set had insufficient samples for each class, while 

the validation and testing sets had equal samples for every 

category. To overcome this challenge, we utilized data 

augmentation methods to increase the number of samples for 

each category and removed any excessively generated images. 

This approach led to the creation of a final dataset with an equal 

number of samples for each class, thereby achieving balance 

across the entire dataset. 

Despite our efforts to include open-source data, we encountered 

a challenge with the contempt and disgust classes, which had 

limited amounts of data. To overcome this issue, we leveraged 

data augmentation techniques to increase the variance of pixel 

matrices, effectively expanding the available data. By doing so, 

we could ensure that the final dataset remained balanced, 

without the need for oversampling techniques. 

In this section, we will describe the data manipulation and 

merging process of multiple datasets, as well as the var ious 

data augmentation techniques used to preprocess the dataset for 

training. Since we used multiple datasets, we had to integrate 

them into one with the same dimensions and configuration for 

the model to use as input. Due to an unbalanced class 

distribution, we utilized various augmentation techniques, 

including: 

One common technique used to increase the diversity of 

available data and improve the model’s generalization ability is 

data augmentation. Image rotation, a specific type of 

augmentation technique, is frequently employed by rotating 

images by a certain degree, usually ranging from 0 to 360. In 

our case, we rotated the images up to 10 degrees to standardize 

the frontal images of FER-2013 and CK+48 datasets to have a 

similar face orientation to AffectNet faces, without affecting 

the already rotated images. This technique expands the 

available data and ensures that the model can recognize and 

learn facial expressions across various face orientations with 

high accuracy. 

To address the challenge of the Transformer architecture’s 

large data requirements and lack of data, we utilized a variety 

of augmentation techniques to increase the sample size. We 

applied several augmentation methods, such as 

RandomRotation [13] and RandomAutocontrast. These 

techniques helped the model become familiar with more data, 

ultimately improving its performance. Additionally, we 

conducted an ablation experiment that proved the effectiveness 

of augmentation in improving model performance. Figure 2 

shows the unbalanced and balanced dataset used for training 

after preprocessing and integration of different datasets of 

facial emotions mentioned in section Sec. 3.2 in detail. 

3.4 Model 
In this section, we presented a Single-Step Detector model used 

for emotion classification and face cropping, along with its 

adaptations. First, we resized the images to 224 × 224 × 3 to 

use them as input for the Transformer model. Finally, we 

normalized the images with a mean and standard deviation of 

0.5 for all channels, as used during SwinT fine-tuning, to 

recognize eight emotions: anger, contempt, disgust, fear, 

happiness, neutral, sadness, and surprise. SwinT split the RGB 

input image into nonoverlapping patches, each patch’s feature 

being a concatenation of the raw pixel RGB values with a patch 

dimension of 4 × 4 × 3 = 48. A linear embedding layer projected 

this feature to an arbitrary dimension C. Swin Transformer 

blocks as shown in Fig. 4, multiple Transformer blocks with 

modified self-attention computation, was ap plied to these 

patch tokens, maintaining the number of tokens (H/4 × W/4) 

and forming ”Stage 1” by combining the linear embedding with 

the blocks. Patch-merging layers reduced the number of tokens, 

concatenating features of each group of 2 × 2 patches, and 

applying a linear layer to the 4C-dimensional concatenated 

features. This reduced the tokens by a factor of 4, with the 

output dimension set to 2C and the resolution maintained at H/8 

× W/8. The same process repeated for ”Stage 2”, ”Stage 3”, and 

”Stage 4”, creating a hierarchical representation with 

resolutions similar to VGGNet and ResNet, allowing the 

backbone networks’ easy replacement for existing vision tasks. 
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Figure 3. (a) The architecture of a SwinT; (b) two 

successive SwinT Blocks W-MSA and SW-MSA are multi-

head selfattention modules with regular and shifted 

windowing configurations, respectively [12]. 

3.5 Squeeze and Excitation 
The Squeeze and Excitation (SE) block, akin to the 

selfattention mechanism, is an integral component of 

attentionbased models. However, it comprises fewer 

parameters than the self-attention block and utilizes only one 

operation of point-wise multiplication. Initially introduced by 

et al. [9](2018) as a channel-wise attention module to optimize 

CNN architecture, we exclusively use the excitation part of the 

SE block, as the squeeze part acts as a pooling layer that 

reduces the dimensionality of 2D-CNN layers, as outlined by 

[1] (2020). 

We apply the SE block atop the Transformer encoder, 

specifically on the classification token vector. Unlike the self-

attention block, which encodes the input sequence and extracts 

features through the class token within the Transformer 

encoder, the SE block re-calibrates the feature responses by 

modeling inter-dependencies among class token channels 

explicitly. This technique enhances the model’s ability to 

identify and learn significant features by selectively amplifying 

relevant channels and suppressing irrelevant ones, ultimately 

leading to improved performance. 

3.6 Transformer with Sharpness-Aware 

Minimizer 
The Sharpness-Aware Minimizer (SAM) algorithm, as 

proposed by Chen et al. [2](2020), leverages the intricate 

geometry of the loss landscape in deep neural networks to 

enhance their generalization capabilities. Unlike conventional 

optimization methods that prioritize the individual parameter’s 

loss value, SAM seeks to smooth the loss landscape and 

minimize both the loss value and curvature simultaneously, 

resulting in parameters that exhibit uniformly low loss values 

and linear curvatures on the loss values. 

When applied to the Vision Transformer model, SAM can 

minimize loss values while simultaneously improving training 

time. Additionally, SAM’s optimization function can address 

the problem of noisy labeling in datasets, a common challenge 

in datasets like Affectnet. However, it is crucial to note that 

SAM’s effectiveness reduces as the training dataset size 

increases, which presents a challenge when dealing with 

unbalanced datasets like Affectnet which have a low number of 

samples for certain emotions such as contempt and disgust. 

Despite the additional computational costs per update, SAM 

has demonstrated promising results on small datasets and can 

potentially serve as a valuable tool to enhance the performance 

of deep neural networks. SAM’s ability to optimize the loss 

landscape’s geometry and minimize the impact of noisy 

labeling in datasets could be instrumental in overcoming some 

of the challenges associated with training deep neural networks. 

 
Figure 4. Cross-entropy loss landscape on ViT (top) and 

the same smoothed landscape with the application of SAM 

(bottom) during the training on ImageNet [2]. 

3.7 Implementation Details 
The model we propose leverages a SwinT model pretrained on 

ImageNet-1K, with transformer configurations tailored to fine-

tuning requirements based on the last layer’s dimension. In 

addition, it provides a randomly weighted version for each 

structure without any pre-training phase. Our model 

demonstrates an impressive F1 score of 0.5452. 

 
 

(a)                                                                                                            (b) 
Figure 5. (a) Training and Validation Accuracy Swin+SE+SAM (b) Training and Validation Loss Swin-T+SE+SAM. 

While presenting our experimental evaluation, we will also 

delve into the potential shortcomings of an alternative method 

we tested. We executed all our experiments on a system 

running Ubuntu Linux version 20.04 and equipped with a 12-

core Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz, 128 GB 

RAM, and 4 NVIDIA RTX 3090 24G 

GPUs. The model implementation is built on PyTorch, utilizing 

its components as the primary framework. During the 

preprocessing phase, we meticulously redefined the images’ 

size to conform to 224 × 224 on three distinct channels (i.e., 

RGB). Furthermore, we normalized the input data and prepared 

the samples for the training phase by applying a mean and 
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standard deviation of 0.5 to each channel. The final model 

weight set is determined by selecting the best validation 

accuracy from the epochs during the training phase. The fine-

tuning phase adapts the model parameters to the FER task using 

either stochastic gradient descent or sharpness-aware 

minimizer adaptation, coupled with a cross-entropy loss 

function. A learning rate scheduler adjusts the initial value for 

every ten epochs by multiplying it by 0.1, with a momentum of 

0.9 applied to increase the Metrics SwinT  SwinT-SE  SwinT-

SE-SAM training speed and a variable learning rate based on 

the optimizer chosen in the experiment. 

We conducted model testing on 4000 diverse samples from 

AffectNet, using training and validation sets without any data 

augmentation. In Table 2 the accuracy of our proposed method 

is represented in bold green, highlighting its exceptional 

performance. The testing accuracy (with approximation to 7 

classes), weighted average precision, recall, and F1-score of the 

models tested on AffectNet are displayed, providing a 

comprehensive overview of their effectiveness in accurately 

identifying and classifying different emotions. This evaluation 

serves as a testament to the robustness and accuracy of our 

proposed method, demonstrating its potential to improve the 

performance of deep neural networks in complex computer 

vision tasks  

Table 2. Results 

 

Our experiments were carried out in this environment, with 

different configurations and SwinT architectures that enable 

better class separation compared to the CNN baseline 

architecture. Additionally, the SE block enhances the SwinT 

model’s robustness, as it maximizes the intradistances between 

clusters. Interestingly, the features before the SE form more 

compact clusters with inter-distance lower than the features 

after the SE, which may suggest that the features before SE are 

more robust than those after the SE. We tested three different 

model variants, including SwinT, SwinT+SE, and 

SwinT+SE+SAM. Based on our empirical observations, we 

concluded that SwinT+SE+SAM outperforms the other 

architectures, indicating that our model is capable of accurately 

recognizing emotions in facial expressions. 

We trained our model using SwinT+SE+SAM model for 25 

epochs. The testing dataset is formed by 4000 samples equally 

distributed (500 samples per class). The plot above shows the 

training and Validation accuracy, Training accuracy was 0.832 

and Validation accuracy was 0.5784. Also as the training 

reached closer to 25 epochs we can see training loss reduced 

similar to validation loss. Table 2 shows different metrics 

results for three different models we choose to compare against, 

which include SwinT, SwinT+SE, SwinT+SE+SAM, We can 

see that the performance of SwinT+SE+SAM seems to 

outperform rest of the model used. Due to the limited 

availability of data for the contempt class, we evaluated our 

models on AffectNet, focusing solely on the seven augmented 

classes. To provide a more comprehensive evaluation, we 

computed precision, recall, and F1 scores, allowing us to assess 

the models’ performance in detail. 

To optimize our SwinT configuration, we experimented with 

various configurations concerning the use of SAM and gradual 

learning rate. Our objective was to identify the optimal 

configuration to avoid overfitting or underfitting while 

achieving acceptable performance with a small dataset. 

It is noteworthy that the current state-of-the-art (SoTA) for the 

AffectNet dataset’s F1 score is 0.6629, as achieved by Multi-

task Efficient Net-B2 for the seven classes of emotions. 

However, our approach, utilizing SwinT for facial emotion 

recognition, is among the first of its kind, and we were able to 

attain an F1 score of 0.5420, indicating strong potential for 

further improvements in our proposed method. Our findings 

provide valuable insights into the feasibility of utilizing SwinT 

for facial emotion recognition, highlighting its effectiveness in 

addressing the challenges associated with small datasets. 

4. CONCLUSION 
Our research delved into the direct application of Transformers 

to image recognition, focusing on testing the robustness of this 

approach on noisy datasets like AffectNet. To process an 

image, we interpreted it as a sequence of patches and employed 

a standard Transformer encoder as used in NLP. 

Our primary challenge was to develop a model capable of 

accurately recognizing eight classes of emotions while facing 

constraints of limited data availability for the FER task. To train 

and validate our models, we utilized only a subset of AffectNet, 

FER-2013, and CK+ datasets. In addition, we utilized the 

SwinT+SE scheme, which optimizes the SwinT’s learning by 

incorporating an attention block called Squeeze and Excitation. 

This approach significantly improved the performance of the 

SwinT in the FER task. 

To further enhance the model’s performance and mitigate the 

effects of noisy data, we utilized an SAM optimizer. This 

allowed us to improve the model’s robustness and performance, 

ensuring that it could accurately classify emotions even in the 

presence of noisy data. Our approach provides valuable insights 

into the potential of utilizing Transformers for image 

recognition and highlights the effectiveness of the SwinT+SE 

and SAM optimizer in enhancing model performance in 

challenging datasets like AffectNet. 
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