CFP last date
28 April 2025
Call for Paper
May Edition
JAAI solicits high quality original research papers for the upcoming May edition of the journal. The last date of research paper submission is 28 April 2025

Submit your paper
Know more
Reseach Article

Detecting Droplets for Crop Spraying Systems using Machine Learning

by Debmalya Ray
Journal of Advanced Artificial Intelligence
Foundation of Computer Science (FCS), NY, USA
Volume 1 - Number 4
Year of Publication: 2025
Authors: Debmalya Ray
10.5120/jaai202420

Debmalya Ray . Detecting Droplets for Crop Spraying Systems using Machine Learning. Journal of Advanced Artificial Intelligence. 1, 4 ( Jan 2025), 26-30. DOI=10.5120/jaai202420

@article{ 10.5120/jaai202420,
author = { Debmalya Ray },
title = { Detecting Droplets for Crop Spraying Systems using Machine Learning },
journal = { Journal of Advanced Artificial Intelligence },
issue_date = { Jan 2025 },
volume = { 1 },
number = { 4 },
month = { Jan },
year = { 2025 },
pages = { 26-30 },
numpages = {9},
url = { https://jaaionline.phdfocus.com/archives/volume1/number4/detecting-droplets-for-crop-spraying-systems-using-machine-learning/ },
doi = { 10.5120/jaai202420 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-02-01T00:09:13.383094+05:30
%A Debmalya Ray
%T Detecting Droplets for Crop Spraying Systems using Machine Learning
%J Journal of Advanced Artificial Intelligence
%V 1
%N 4
%P 26-30
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Agricultural Development combined with technology has made great progress in recent years, making it possible to improve the yield for farmers. This project combines deep learning algorithms with spraying technology to design a machine vision precision real-time targeting spraying system for field scenarios. Highly efficient mechanized nozzles are used to spray and apply nutrients and pesticides to crops so that farmers can increase production and mitigate the gap between supplies and demands. We employ high-speed visualization [8] to quantify the impact and evaporation of a droplet on a solid surface. This will also help us to identify the density/area covered by a single spray at a time and correct the delta part left to be covered at first work. This paper is focused on using image classification techniques with a computer vision algorithm to extract the parameters required from a single image at a time and convert it into structured data so that an unsupervised algorithm can cluster the regions based on density.

References
  1. Chen, Z. Y., Wu, R. H., Lin, Y. Y., Li, C. Y., Chen, S. Y., Yuan, Z. E., et al. (2022). Plant disease recognition model based on improved YOLOv5. Agronomy-Basel 12 (2), 14. doi: 10.3390/agronomy12020365
  2. Chueca, P., Garcera, C., Molto, E., and Gutierrez, A. (2008). Development of a sensor-controlled sprayer for applying low-volume bait treatments. Crop Prot. 27 (10), 1373–1379. doi: 10.1016/j.cropro.2008.05.004
  3. Cooper, J., and Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Prot. 26 (9), 1337–1348. doi: 10.1016/j.cropro.2007.03.022
  4. Dammer, K. H. (2016). Real-time variable-rate herbicide application for weed control in carrots. Weed. Res. 56 (3), 237–246. doi: 10.1111/wre.12205
  5. Deng, W., He, X. K., Zhang, L. D., Zeng, A. J., Song, J. L., and Zou, J. J. (2008). Target infrared detection in target spray. Spectrosc. Spectr. Anal. 28 (10), 2285– 2289. doi: 10.3964/j.issn.1000-0593(2008)10-2285-05
  6. He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision (USA: IEEE). 2961–2969. doi: 10.1109/ICCV.2017.322
  7. Howard, A., Pang, R., Adam, H., Le, Q. V., Sandler, M., Chen, B., et al. (2019). “Searching for MobileNetV3,” in International conference on computer vision (USA: IEEE). 1314–1324. doi: 10.1109/ICCV.2019.00140
  8. Lan, Y., Shan, C., Wang, Q., Liu, Q., Yang, C., Xie, Y., et al. (2021). Effects of different spray additives on droplet deposition characteristics during plant protection UAV spraying operations. Transact. Chin. Soc Agric. Eng. 37 (16), 31–38. doi: 10.11975/j.issn.1002-6819.2021.16.005
  9. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). “Ssd: Single shot multibox detector,” in European conference on computer vision (Germany: Springer). 21–37. doi: 10.1007/978-3-319-46448-0_2
  10. Meshram, A. T., Vanalkar, A. V., Kalambe, K. B., and Badar, A. M. (2022). Pesticide spraying robot for precision agriculture: A categorical literature review and future trends. J. Field Robot. 39 (2), 153–171. doi: 10.1002/rob.22043
  11. Song, Y. Y., Sun, H., Li, M. Z., and Zhang, Q. (2015). Technology application of smart spray in agriculture: A review. Intell. Autom. Soft. Comput. 21 (3), 319–333. doi: 10.1080/10798587.2015.1015781
  12. Verger, P. J. P., and Boobis, A. R. (2013). Reevaluate pesticides for food security and safety. Science 341 (6147), 717–718. doi: 10.1126/science.1241572
  13. Wang, A. C., Zhang, W., and Wei, X. H. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 158, 226–240. doi: 10.1016/j.compag.2019.02.005
  14. Wang, L. L., Zhao, Y. J., Xiong, Z. J., Wang, S. Z., Li, Y. H., and Lan, Y. B. (2022). Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model. Front. Plant Sci. 13, 16. doi: 10.3389/fpls.2022.965425
  15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. 12.
  16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. 13.
  17. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. 14.
  18. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. 15. Sun, R. Optimization for deep learning: Theory and algorithms. arXiv 2019, arXiv:1912.08957.
  19. Li, L.; Zhang, S.; Wu, J. Efficient object detection framework and hardware architecture for remote sensing images. Remote Sens. 2019, 11, 2376. [CrossRef]
  20. Mirani, I.K.; Tianhua, C.; Khan, M.A.A.; Aamir, S.M.; Menhaj, W. Object Recognition in Different Lighting Conditions at Various Angles by Deep Learning Method. arXiv 2022, arXiv:2210.09618.
  21. Acharya, P.; Burgers, T.; Nguyen, K.D. AI-enabled droplet detection and tracking for agricultural spraying systems. Comput. Electron. Agric. 2022, 202, 107325. [CrossRef]
  22. De Cock, N.; Massinon, M.; Nuyttens, D.; Dekeyser, D.; Lebeau, F. Measurements of reference ISO nozzles by high- speed imaging. Crop Prot. 2016, 89, 105–115. [CrossRef]
  23. Butts, T.R.; Samples, C.A.; Franca, L.X.; Dodds, D.M.; Reynolds, D.B.; Adams, J.W.; Zollinger, R.K.; Howatt, K.A.; Fritz, B.K.; Clint Hoffmann, W.; et al. Spray droplet size and carrier volume effect on dicamba and glufosinate efficacy. Pest Manag. Sci. 2018, 74, 2020–2029. [CrossRef] [PubMed]
  24. Guan, Q.; Chen, Y.; Wei, Z.; Heidari, A.A.; Hu, H.; Yang, X.H.; Zheng, J.; Zhou, Q.; Chen, H.; Chen, F. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput. Biol. Med. 2022, 145, 105444. [CrossRef] [PubMed].
  25. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788.
Index Terms

Computer Science
Information Sciences

Keywords

Machine vision image processing methods unsupervised learning droplets impact