CFP last date
28 April 2025
Call for Paper
May Edition
JAAI solicits high quality original research papers for the upcoming May edition of the journal. The last date of research paper submission is 28 April 2025

Submit your paper
Know more
Reseach Article

Challenges of Integrating Spatiotemporal Data with AI/ML Models for Road Traffic Congestion Prediction

by Mohammad Alam
Journal of Advanced Artificial Intelligence
Foundation of Computer Science (FCS), NY, USA
Volume 1 - Number 4
Year of Publication: 2025
Authors: Mohammad Alam
10.5120/jaai202417

Mohammad Alam . Challenges of Integrating Spatiotemporal Data with AI/ML Models for Road Traffic Congestion Prediction. Journal of Advanced Artificial Intelligence. 1, 4 ( Jan 2025), 8-14. DOI=10.5120/jaai202417

@article{ 10.5120/jaai202417,
author = { Mohammad Alam },
title = { Challenges of Integrating Spatiotemporal Data with AI/ML Models for Road Traffic Congestion Prediction },
journal = { Journal of Advanced Artificial Intelligence },
issue_date = { Jan 2025 },
volume = { 1 },
number = { 4 },
month = { Jan },
year = { 2025 },
pages = { 8-14 },
numpages = {9},
url = { https://jaaionline.phdfocus.com/archives/volume1/number4/challenges-of-integrating-spatiotemporal-data-with-aiml-models-for-road-traffic-congestion-prediction/ },
doi = { 10.5120/jaai202417 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-02-01T00:09:13.394540+05:30
%A Mohammad Alam
%T Challenges of Integrating Spatiotemporal Data with AI/ML Models for Road Traffic Congestion Prediction
%J Journal of Advanced Artificial Intelligence
%V 1
%N 4
%P 8-14
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Integrating spatiotemporal data with artificial intelligence (AI) and machine learning (ML) models offers significant potential for enhancing road traffic congestion predictions. However, this integration poses several challenges. This paper examines these challenges, focusing on data quality, model complexity, and real-time processing demands. Spatiotemporal data, which encompasses both spatial and temporal dimensions, is essential for accurate traffic forecasting but often suffers from incompleteness, noise, and inconsistency. Additionally, the high computational requirements of advanced AI/ML models and the need for real-time data processing further complicate the integration process. This paper reviews recent advancements to address these challenges, including improved data collection techniques, novel AI/ML approaches, and solutions for enhancing data privacy and security. By highlighting these challenges and exploring potential solutions, this paper contributes to the ongoing development of more effective traffic congestion prediction systems.

References
  1. Lin, J., Li, Z., Li, Z., Bai, L., Zhao, R., & Zhang, C. (2023). Dynamic causal graph convolutional network for traffic prediction. In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) (pp. 1-8). IEEE.
  2. Huaxiu, Y., Xianfeng, T., Hua, W., Guanjie, Z., & Zhenhui, L. (2019). Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. https://doi.org/10.1609/aaai.v33i01.33015668.
  3. Qian, Q., & Mallick, T. (2024). Wavelet-Inspired Multiscale Graph Convolutional Recurrent Network for Traffic Forecasting. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5680-5684). IEEE.
  4. Zhao, Z., Yuan, H., Jiang, N., Chen, M., Liu, N., & Li, Z. (2024). STMGF: An Effective Spatial-Temporal Multi-Granularity Framework for Traffic Forecasting. In International Conference on Database Systems for Advanced Applications (pp. 235-245). Singapore: Springer Nature Singapore.
  5. Fang, Z., Pan, L., Chen, L., Du, Y., & Gao, Y. (2021). MDTP: A multisource deep traffic prediction framework over spatio-temporal trajectory data. Proceedings of the VLDB Endowment, 14(8), 1289-1297.
  6. Miao, H., Wang, S., Zhang, M., Guo, D., Sun, F., & Yang, F. (2024). Deep Multi-View Channel-Wise Spatio-Temporal Network for Traffic Flow Prediction. https://arxiv.org/abs/2404.15034.
  7. Han, S., Park, Y., Lee, M., An, J., & Lee, D. (2023). Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity Analysis. https://doi.org/10.1145/3583780.3614867.
  8. Feng, Y., Zhao, Y., Zhang, X., Batista, S. F., Demiris, Y., & Angeloudis, P. (2024). Predicting spatio-temporal traffic flow: a comprehensive end-to-end approach from surveillance cameras. Transportmetrica B: Transport Dynamics, 12(1), 2380915. https://doi.org/10.1080/21680566.2024.2380915.
  9. Zhou, B., Liu, J., Cui, S., & Zhao, Y. (2024). A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction. Big Data Mining and Analytics, 2024, 7(3): 621-636. https://doi.org/10.26599/BDMA.2024.9020020.
  10. Chen, Y., Li, Z., Ouyang, W., & Lepech, M. (2023, August). Adaptive hierarchical spatiotemporal network for traffic forecasting. In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) (pp. 1-6). IEEE.
  11. Liu, C., Yang, S., Xu, Q., Li, Z., Long, C., Li, Z., & Zhao, R. (2024). Spatial-temporal large language model for traffic prediction. arXiv preprint arXiv:2401.10134.
  12. Mihaita, A., Li, H., & Rizoiu, M. (2020). Traffic congestion anomaly detection and prediction using deep learning. https://doi.org/10.48550/arXiv.2006.13215.
  13. Jin, G., Liu, L., Li, F., & Huang, J. (2023). Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 37(12), 14268-14276. https://doi.org/10.1609/aaai.v37i12.26669.
  14. Mehdipour Ghazi, M., Ramezani, A., Siahi, M., & Mehdipour Ghazi, M. (2022). Learning spatiotemporal features from incomplete data for traffic flow prediction using hybrid deep neural networks. arXiv preprint arXiv:2204.10222.
  15. Jiang, W., Han, J., Liu, H., Tao, T., Tan, N., & Xiong, H. (2024). Interpretable cascading mixture-of-experts for urban traffic congestion prediction. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 5206-5217).
  16. Zhao, W., Zhang, S., Wang, B., & Zhou, B. (2023). Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems. PeerJ Computer Science, 9, e1484.
Index Terms

Computer Science
Information Sciences

Keywords

Spatiotemporal Data Traffic Congestion Prediction Machine Learning Deep Learning Predictive Modeling