CFP last date
28 January 2025
Call for Paper
February Edition
JAAI solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 28 January 2025

Submit your paper
Know more
Reseach Article

A Subspace KNN Ensemble Classifier for Land Cover Classification using Medium Resolution Satellite Images

by Atijosan Abimbola, Olaoluwa Idayat A.
Journal of Advanced Artificial Intelligence
Foundation of Computer Science (FCS), NY, USA
Volume 1 - Number 3
Year of Publication: 2024
Authors: Atijosan Abimbola, Olaoluwa Idayat A.
10.5120/jaai202415

Atijosan Abimbola, Olaoluwa Idayat A. . A Subspace KNN Ensemble Classifier for Land Cover Classification using Medium Resolution Satellite Images. Journal of Advanced Artificial Intelligence. 1, 3 ( Dec 2024), 23-30. DOI=10.5120/jaai202415

@article{ 10.5120/jaai202415,
author = { Atijosan Abimbola, Olaoluwa Idayat A. },
title = { A Subspace KNN Ensemble Classifier for Land Cover Classification using Medium Resolution Satellite Images },
journal = { Journal of Advanced Artificial Intelligence },
issue_date = { Dec 2024 },
volume = { 1 },
number = { 3 },
month = { Dec },
year = { 2024 },
pages = { 23-30 },
numpages = {9},
url = { https://jaaionline.phdfocus.com/archives/volume1/number3/a-subspace-knn-ensemble-classifier-for-land-cover-classification-using-medium-resolution-satellite-images/ },
doi = { 10.5120/jaai202415 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-12-31T21:43:40+05:30
%A Atijosan Abimbola
%A Olaoluwa Idayat A.
%T A Subspace KNN Ensemble Classifier for Land Cover Classification using Medium Resolution Satellite Images
%J Journal of Advanced Artificial Intelligence
%V 1
%N 3
%P 23-30
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Accurate land cover information is crucial for the development and implementation of various environmental, socio-political and economic policies. Classification techniques are fundamental in this regard, as they determine the accuracy of information obtained from land cover classification and thus, affect the accuracy of subsequent applications. In this research, a subspace KNN ensemble classifier with a nearest neighbour learning algorithm is proposed for the accurate classification of medium-resolution multispectral satellite images. The Landsat satellite dataset obtained from the UC Irvine machine learning repository was used as the testing data. For performance evaluation, confusion matrix and receiver operating curve plots were used for performance evaluation. Performance comparison was made with three well-known machine learning classifiers namely, Decision Tree (DT), Support Vector Machine (SVM) and Kernel Naïve Bayes (KNB) models to determine the model with the highest accuracy. Results obtained show that the subspace KNN ensemble classifier outperforms the other classifiers in terms of accuracy as it achieves a 91.5% accuracy while DT, SVM and KNB classifiers achieved 85%, 90.4 and 81.8% accuracy respectively.

References
  1. Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85, 1529-1543.
  2. Ali, K., & Johnson, B. A. (2022). Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors, 22(22), 8750.
  3. Atijosan, A., Badru, R., Babalogbon, A., & Alaga, T. (2016). Classification of Medium Resolution Satellite Imageries using Artificial Neural Network and Swarm Intelligence. International Journal of Hybrid Information Technology, 9(11), 215-228.
  4. Bouslihim, Y., Kharrou, M. H., Miftah, A., Attou, T., Bouchaou, L., & Chehbouni, A. (2022). Comparing pan-sharpened landsat-9 and sentinel-2 for land-use classification using machine learning classifiers. Journal of Geovisualization and Spatial Analysis, 6(2), 35.
  5. Cervone, G., & Haack, B. (2012). Supervised machine learning of fused RADAR and optical data for land cover classification. Journal of Applied Remote Sensing, 6(1), 063597-063597.
  6. Fotso Kamga, G. A., Bitjoka, L., Akram, T., Mengue Mbom, A., Rameez Naqvi, S., & Bouroubi, Y. (2021). Advancements in satellite image classification: methodologies, techniques, approaches and applications. International Journal of Remote Sensing, 42(20), 7662-7722.
  7. Herrera, F., Charte, F., Rivera, A. J., del Jesus, M. J., Herrera, F., Charte, F., ... & del Jesus, M. J. (2016). Ensemble-based classifiers. Multilabel classification: problem analysis, metrics and techniques, 101-113.
  8. Jozdani, S. E., Johnson, B. A., & Chen, D. (2019). Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, 11(14), 1713.
  9. Kiziloz, H. E. (2021). Classifier ensemble methods in feature selection. Neurocomputing, 419, 97-107.
  10. Liyanage, V., Tao, M., Park, J. S., Wang, K. N., & Azimi, S. (2023). Malignant and non-malignant oral lesions classification and diagnosis with deep neural networks. Journal of Dentistry, 137, 104657.
  11. Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International journal of remote sensing, 39(9), 2784-2817.
  12. Oprea, C., & Ti, Ș. (2014). Performance evaluation of the data mining classification methods. Information society and sustainable development, 1, 249-253.
  13. Ouchra, H. A. F. S. A., Belangour, A., & Erraissi, A. L. L. A. E. (2023). Machine learning algorithms for satellite image classification using Google Earth Engine and Landsat satellite data: Morocco case study. IEEE Access.
  14. Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using Google Earth Engine and random forest classifier. The role of image composition. Remote Sensing, 12(15), 2411.
  15. Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2023). Decision tree and random forest classification algorithms for mangrove forest mapping in Sembilang National Park, Indonesia. Remote Sensing, 15(1), 16.
  16. Rashid, M., Mustafa, M., Sulaiman, N., Abdullah, N. R. H., & Samad, R. (2021). Random Subspace K-NN Based Ensemble Classifier for Driver Fatigue Detection Utilizing Selected EEG Channels. Traitement du Signal, 38(5).
  17. Sa’idah, S., Pratiwi, N. K. C., Aprilia, B. S., Magdalena, R., & Fu’adah, Y. N. (2019, November). Land cover classification using Grey Level Co-occurrence Matrix and Naive Bayes. In Journal of Physics: Conference Series (Vol. 1367, No. 1, p. 012073). IOP Publishing.
  18. Saini, R., & Rawat, S. (2023, March). Land Use Land Cover Classification in Remote Sensing Using Machine Learning Techniques. In 2023 1st International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP) (pp. 99-104). IEEE.
  19. Schneider, P., & Xhafa, F. (2022). Anomaly Detection and Complex Event Processing Over IoT Data Streams: With Application to EHealth and Patient Data Monitoring. Academic Press.
  20. Singh, M., & Tyagi, K. D. (2021). Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network. Remote Sensing Applications: Society and Environment, 24, 100645.
  21. Srinivasan, Ashwin. (1993). Statlog (Landsat Satellite). UCI Machine Learning Repository. https://doi.org/10.24432/C55887.
  22. Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations. A review. Remote Sensing, 12(7), 1135.
  23. Tariq, A., & Mumtaz, F. (2023). Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral remote sensing data. Environmental Science and Pollution Research, 30(9), 23908-23924.
Index Terms

Computer Science
Information Sciences

Keywords

Subspace KNN ensemble classifiers Support Vector Machines Medium Resolution Satellite Images Land Cover Classification