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ABSTRACT 

In autonomous cars and intelligent transportation systems, 

vehicle identification and tracking are crucial components. 

Unfavorable weather conditions, such as intense snow, fog, 

rain, dust storms, or sandstorms, as well as low-light scenarios, 

pose a serious threat to the functionality of cameras since they 

impair driving safety by lowering visibility. The proposed 

system combines the strengths of the YOLO (You Only Look 

Once) algorithm, known for its real-time vehicle detection, 

with cutting-edge computer vision techniques. In response to 

adverse weather intricacies such as fog, rain, and reduced 

visibility, the study employs advanced defogging algorithms 

and the Cycle Generative Adversarial Network to enhance 

image clarity. Additionally, the research introduces a real-time 

adaptive defogging mechanism that dynamically adjusts its 

parameters based on the severity of fog or adverse weather 

conditions, ensuring continuous and optimal performance. This 

hybrid architecture capitalizes on the unique strengths of 

different algorithms, combining the speed of YOLO, the 

accuracy of Faster R-CNN, and the adaptability of Efficient 

Net. The implications of this research extend beyond advancing 

computer vision, with tangible applications in promoting road 

safety and minimizing traffic accidents. With critical 

applications in autonomous driving, surveillance, and 

transportation safety, this research paves the way for 

advancements that have a positive impact on public safety and 

transportation efficiency. 
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1. INTRODUCTION 
In today's dynamic landscape, in the realm of autonomous 

vehicles and intelligent transportation systems, the accurate 

detection of vehicles faces formidable challenges when 

exposed to adverse weather conditions and low-light scenarios. 

The efficacy of technologies pivotal to autonomous driving, 

traffic management, and collision avoidance hinges on the 

precision and consistency of vehicle detection. However, these 

challenges become 

pronounced when confronted with real-world conditions 

dominated by adverse weather intricacies such as fog, rain, and 

reduced visibility. The proposed system leverages the strengths 

of the YOLO (You Only Look Once) algorithm, known for its 

real-time vehicle detection capabilities, and combines them 

with advanced computer vision methodologies. In response to 

adverse weather intricacies, including fog and low-light 

conditions, the study introduces novel defogging algorithms, 

notably the CycleGAN architecture, to enhance image clarity. 

Moreover, a real-time adaptive defogging mechanism 

dynamically adjusts its parameters based on the severity of 

adverse weather conditions, ensuring continuous optimal 

performance. 

Beyond the technical intricacies, the broader aspiration of this 

research is to catalyze a transformative shift in the integration 

of AI technologies, particularly in autonomous vehicles, 

surveillance systems, and transportation safety. The goal is not 

merely to overcome impediments but to spearhead 

advancements that fortify the resilience, dependability, and 

safety of these groundbreaking technologies. This exploration 

extends beyond technological innovation; it embodies a holistic 

endeavor to sculpt a future where autonomous systems 

seamlessly navigate through the complexities of real-world 

conditions. The ultimate aim is to create an ecosystem where 

safety, efficiency, and dependability converge, laying the 

groundwork for a transportation landscape where the 

boundaries between the challenges of adverse weather and 

cutting-edge technology blur into insignificance. The 

contributions of this paper are summed up as follows; 

Significantly improving the visibility of vehicles in low-light 

and adverse weather conditions, including fog and rain. The 

proposed methodology employs advanced defogging 

techniques, specifically using CycleGAN, to enhance image 

clarity and mitigate the challenges associated with reduced 

visibility. 

• Introducing a powerful vehicle identification 

method based on efficientnet, faster R-CNN, 

and YOLOv7. 

This method addresses the shortcomings of individual 
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algorithms by combining their strengths to ensure accurate 

vehicle recognition in the improved photos. 

• Pioneering a fusion strategy that combines the 

outputs of YOLO, Faster R-CNN, and 

EfficientNet. This fusion-driven approach aims 

to achieve higher accuracy in vehicle detection 

by capitalizing on the unique strengths of each 

algorithm, resulting in a more comprehensive 

and reliable detection system. 

• Implementing a real-time vehicle detection 

system capable of continuous monitoring and 

identification of vehicles in low-light and 

adverse conditions. This contribution ensures 

the practical applicability of the system in 

dynamic scenarios, such as traffic management 

and surveillance. 

This article's remaining sections are arranged as follows; 

Section II contains related works. Section III provides an 

explanation of data collection and its issues. Section IV 

provides an explanation of the proposed vehicle detection 

techniques. Section V presents comprehensive experimental 

results and a detailed evaluation. Lastly, Section VI brings the 

work to a conclusion. 

2. RELATED WORK 
Recent research on vehicle detection methods has revealed a 

number of creative strategies, each of which demonstrates 

improvements but also has certain drawbacks. 

By combining headlight and taillight data, Zhang et al.'s multi-

camera system for nighttime vehicle detection made notable 

advancements and significantly increased tracking accuracy. 

But it became difficult to localize contours accurately for trucks 

and other larger vehicles, which resulted in sporadic failures. 

This limitation arises from challenges in classifying headlights 

and taillights for larger vehicles in an efficient manner, leading 

to ambiguities and sometimes false positives. Noisy lighting 

sources also caused the system to struggle, which affected the 

accuracy and performance of contours. [1] 

When compared to traditional methods, Liu's approach for 

obstacle detection in foggy weather combined GCANet and 

feature fusion training, resulting in impressive improvements 

in precision, recall, and mAP. Though successful, the system's 

precision was not as high as that of other approaches in 

situations other than cloudy weather. Its resilience to a range of 

unfavorable weather conditions, including rainy ones, is still 

unknown, necessitating more testing to guarantee resilience in 

these situations. [2] 

. In order to achieve a balance between speed and accuracy in 

real-time vehicle detection using deep networks, Nafiseh Zarei 

developed the Fast-Yolo-Rec algorithm. Although there were 

noticeable gains in speed and accuracy, the alternating use of 

prediction and detection networks added complexity that 

affected efficiency and real-time performance. Intricacy was 

increased by stable labeling for position prediction in odd 

frames, and difficulties may arise from the algorithm's 

flexibility in dynamic situations. [3] 

Reducing vehicle misdetection was a notable outcome of using 

Wang's Soft-Weighted-Average ensemble method in deep 

learning vehicle detection. However, its inability to adapt to 

more complicated scenarios was hampered by its dependence 

on high-quality labeled training data. Its efficacy in handling 

more difficult scenarios was called into question by the 

emphasis on easy-level detection targets, underscoring the need 

for additional research and development. [4] 

Yuanfeng Wu's AFFCM model showed excellent results for 

aerial vehicle recognition by utilizing multimodal properties. 

Although it significantly outperformed baseline approaches in 

terms of mAP, it was limited in its capacity to adapt to settings 

with a lack of diverse training samples because of its reliance 

on high-quality labeled data. [5] 

When taken as a whole, these developments show how far 

vehicle identification technology has come, but they also make 

clear the need for more research to overcome certain obstacles. 

These include decreasing reliance on high-quality labeled 

datasets, increasing flexibility to varied weather conditions and 

difficult scenarios, improving accuracy for bigger vehicles, and 

guaranteeing stable performance across a range of real-world 

driving situations. 

3. DATA COLLECTION AND 

CHALLENGES 
In this section, we will provide a detailed explanation of the 

computer vision model and algorithms employed to meet the 

unique challenges of detecting vehicles in front and behind 

autonomous vehicles in adverse weather conditions and low-

light scenarios. Our model is specifically tailored to process 

images affected by adverse weather conditions, including rain, 

fog, and poor visibility, as well as low-light conditions, with 

the primary goal of improving vehicle detection accuracy and 

ensuring the safety and reliability of autonomous driving 

systems. 

The research conducted an extensive and diverse experimental 

study utilizing a robust dataset comprising over 500 videos 

captured during both day and night scenarios. This dataset 

provides a comprehensive representation of varying lighting 

conditions, allowing for a thorough analysis of the proposed 

system's performance across diurnal cycles. Additionally, the 

dataset includes a substantial collection of over 500 videos 

recorded under adverse weather conditions, such as fog and 

rain, introducing challenges associated with reduced visibility. 

This diverse dataset enables a comprehensive evaluation of the 

system's efficacy in adverse weather scenarios, addressing real-

world challenges encountered in practical applications. The 

abundance of videos across different conditions contributes to 

the reliability and generalizability of the experimental findings, 

making the research outcomes pertinent to a wide range of 

environmental situations. 

3.1 Addressing Adverse Weather Conditions 
The process of detecting vehicles for autonomous vehicles is 

complex and involves a number of techniques, such as using 

rain removal techniques and defogging algorithms to improve 

visibility in cloudy and foggy conditions, integrating thermal 

cameras and sensor fusion with radar and LIDAR for reliable 

vehicle detection, deploying sensor cleaning and adaptive 

lighting systems, training machine learning models on a variety 

of weather datasets, and putting redundancy and fail-safe 

mechanisms in place to guarantee safety and dependability in 

difficult weather situations. All of these methods are 

continuously monitored for adaptive response, with the goal of 

improving visibility and preserving the integrity of autonomous 

driving systems in challenging weather conditions. 
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Fig. 1. Adverse Weather Dataset 

3.2 Addressing Low Light and Nighttime 
This involves using infrared illumination and low-light cameras 

to take pictures in low-light situations, applying denoising and 

image enhancement algorithms to enhance the quality of the 

images, incorporating thermal cameras to identify heat 

signatures for vehicle recognition, making use of active safety 

features like adaptive headlights to improve visibility, and 

training machine learning models to adapt to and identify 

vehicles in low-light and nighttime scenarios. The integration 

of these methodologies guarantees autonomous cars' capacity 

to travel and identify things in low-light and nighttime 

scenarios, hence augmenting safety and dependability. 

 

Fig. 2. Night Time Dataset 

4. PROPOSED SYSTEM 
To address shortcomings in vehicle identification and 

recognition, particularly in inclement weather, the suggested 

system design incorporates state-of-the-art computer vision 

techniques, with a focus on the YOLO framework. The 

system's main modules are as follows: the input module collects 

data from sensors or cameras. Subsequently, the Preprocessing 

Module refines the input data, and the Defogging Module uses 

sophisticated algorithms such as CycleGAN to reduce the 

effect of bad weather on the image quality. With an emphasis 

on YOLO, the Vehicle Detection Module provides accurate 

bounding box coordinates and labels while simultaneously 

identifying and classifying vehicles in real-time. To increase 

detection accuracy, the Fusion Module intelligently integrates 

outputs with algorithms such as Faster R-CNN and 

EfficientNet. Ultimately, the Output Module presents the 

findings graphically, supporting uses like surveillance and 

driverless cars by guaranteeing reliable operation even under 

adverse weather conditions 

4.1 CycleGAN 
The  novel  neural  network  architecture  known  as CycleGAN, 

or Cycle-Consistent Generative Adversarial Network, is used 

for image processing and computer vision. It functions inside 

the Generative Adversarial Network (GAN) framework and is 

intended to learn mappings between two different picture 

domains without requiring paired data for training. "Cycle-

consistent" refers to its capacity to provide consistency in 

domain mapping, enabling conversions like pictures from one 

domain to another and back. 

The transformation process in a CycleGAN unfolds iteratively 

during training epochs. Initially, both generators, G_AtoB and 

G_BtoA, randomly initialize their weights. Adversarial training 

involves the generators attempting to generate realistic images 

in the target domain, while discriminators D_A and D_B aim 

to distinguish between real and generated images. The 

generators adjust their parameters to minimize the adversarial 

loss, encouraging the production of images that are 

perceptually authentic. Simultaneously, the cycle-consistency 

loss enforces that the translation is bidirectional. For an image 

x in domain A, G_AtoB generates an image G_AtoB(x) in 

domain B, and then G_BtoA reconstructs it back to the original 

domain A as G_BtoA(G_AtoB(x)). The cycle-consistency loss 

penalizes discrepancies between the original input x and the 

reconstructed image G_BtoA(G_AtoB(x)), ensuring a faithful 

mapping. 

 
Fig. 3. Structure of CycleGAN 

To further enhance the stability of the training, identity 

mapping loss encourages the generators to preserve key 

features in the input images. This is achieved by enforcing that 

applying G_BtoA to an image in domain B results in an image 

close to the original, and vice versa for G_AtoB. 

The discriminators are concurrently trained to accurately 

classify between real and generated images, contributing to the 

adversarial training loop. As the training progresses, the 

generators and discriminators fine-tune their parameters 

through backpropagation, gradually improving the quality of 

the generated images. The overall training process continues 

iteratively until a satisfactory convergence is achieved, where 

the generators are capable of transforming adverse weather or 

low-light images of vehicles into clear images with high 

fidelity. The success of the model can be assessed through 

quantitative metrics such as PSNR or SSIM and a qualitative 

evaluation of the generated images against ground-truth clear 

images. Adjustments may be made to hyperparameters, 

architecture, or training data based on the observed 

performance during training and evaluation. 

Let Frames from domain A (Adverse weather image) and 

standard domain B (Clear Image) be represented by the 

notations xA ∈ A and xB ∈ B, respectively. Figure 4.1 

illustrates the two generators, which are composed of an 

encoder  and  a  decoder.  Specifically,  G  AtoB  = 

{GEAtoB},GD AtoB} transforms domain A to B (A → B), 

while G BtoA = {G E BtoA,G D BtoA} transforms domain B 

to A (B → A). Using the generator GA→B, the objective of 

unfavorable weather translation is to successfully synthesize 

altered picture XB from XA. For stable and balanced 

optimization, the majority of CycleGAN-based models use a 
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symmetrical opposite translation (B → A → B) in addition to 

adopting a cyclic translation technique (A→ B → A) to take 

advantage of cycle-consistency loss. 

4.2 Detection Module 
The main goal of the fusion-driven approach is to establish a 

mutually beneficial connection between the three integrated 

algorithms—YOLO, Faster R-CNN, and EfficientNet—in 

order to produce a hybrid model that excels in a number of areas 

that are essential for efficient vehicle recognition. Figure 4 

explains the architecture of the proposed methodology. The 

fusion is a purposeful orchestration that aims for a harmonic 

combination of qualities rather than just the sum of the 

individual contributions. This tactical combination aims to 

strike a balance by tackling certain issues that arise in real-

world situations as well as computing efficiency. 

1) YOLO Algorithm: The most recent iteration of YOLOV7 

is chosen as the detection network in order to increase the 

precision and real-time vehicle identification for 

autonomous driving in dimly lit and foggy weather 

situations. Based on a particular level of detection 

accuracy, the YOLO series is a quick object identification 

method that is notable for its lightweight and speed. 

Consequently, when used in low-light, foggy conditions, 

the chosen YOLO detection technique works well for 

autonomous car object recognition. From V1 to V7, Yolo's 

detection accuracy and speed were consistently enhanced. 

With its emphasis on optimization, YOLOV7 aims to 

increase the cost of training while maintaining accuracy 

levels and consuming fewer computing parameters. 

aforementioned attributes, the same network architecture, 

and the lost function of YOLOV7. When the object 

detection module is utilized in low-light or adverse 

conditions, it combines the aforementioned capabilities 

with the same network architecture and the absence of the 

function of YOLOV7. After defogging photos, the 

algorithm is utilized for vehicle recognition to enhance 

control choices, increase the safety of autonomous cars in 

inclement weather, and attain road environment awareness 

for autonomous driving in low-light and adverse weather 

situations. Figure 4 displays the YOLOV7 design, which 

proposes an extended ELAN (E-ELAN) based on ELAN 

in the system's architecture. By employing techniques like 

extension and integrating bases, the network's learning 

capacity is continually improved without affecting the 

initial gradient route. In the calculation process, group 

convolution is utilized to expand the bases and channels. 

The input, backbone, and head are the three components 

that make up the YOLOV7 network. The whole backbone 

layer, which is utilized to extract features, is made up of 

many BConv layers, E-ELAN layers, and 

MPConvlayers that alternately double the channels, cut 

the aspect in half, and extract the features. Head is a 

forecasting layer that is made up of multiple SPPCPC 

layers, multiple BConv layers, multiple MPConv layers, 

multiple Concat layers, and a RepVGG block layer that 

generates three Heads in the end. Following the 

production of three separate feature maps, the Head 

proceeds to produce three unprocessed predictions with 

varying sizes via the three REP and Conv layers. 

2) Integration of Faster R-CNN: The YOLO (You Only 

Look Once) algorithm and Faster R-CNN (Region-

based Convolutional Neural Network) are strategically 

combined to maximize the accuracy of vehicle recognition 

in input footage. Because it divides an image into a grid 

and predicts bounding boxes and class probabilities for 

each grid cell in a single forward pass, YOLO is well 

known for its real-time object recognition capabilities. 

Faster R-CNN, on the other hand, is a two-stage 

object identification model that uses a classifier after the 

region proposal network (RPN) to refine the bounding box 

suggestions that the RPN first generated. YOLO quickly 

analyzes the complete image, enabling effective and 

timely object recognition. However, Faster R-CNN steps 

in to provide its expertise for cases where better precision 

is required. Potential bounding box recommendations are 

generated by the RPN of Faster R-CNN, and these ideas 

are refined by the succeeding classifier to produce a more 

precise vehicle localization. In order to get a balanced 

approach, this integration is important. The speed of 

YOLO guarantees real-time processing, and the faster R-

CNN enhances the accuracy of vehicle identification. The 

integrated design seeks to offer an ideal solution for 

vehicle identification jobs by merging the advantages of 

both models, meeting the needs of situations where speed 

and accuracy must be balanced. 

3) EfficientNet: The hybrid architecture's integration of 

EfficientNet is essential for improving the system's 

flexibility, especially in resource-constrained settings. A 

neural network architecture called EfficientNet is intended 

to scale models efficiently, resulting in significant 

performance with fewer parameters. The hybrid 

architecture's EfficientNet component guarantees 

flexibility in a range of computing settings. The system's 

simplified architecture makes effective use of the 

resources at its disposal while maintaining exceptional 

performance. This flexibility is essential to maintaining 

the vehicle detection system's effectiveness and 

dependability under a variety of operational 

circumstances, particularly in situations where there may 

be computational limitations. The hybrid design seeks to 

achieve a compromise between strong vehicle detection 

capability and computing economy by integrating 

EfficientNet. 

4) Fusion-Driven Strategy: The results of each algorithm 

complement and strengthen one another in a dynamic 

interaction. This partnership explores the subtle nuances 

of detection rather than only cooperating on the surface. 

YOLO quickly gathers real-time data, whereas Faster R-

CNN's methodical, precision-focused technique 

painstakingly refines the output. 
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Fig. 4. Schematic structure of neural network used in proposed work 

5. EVALUATION AND VALIDATION 
A wide range of performance measures are used to evaluate the 

suggested vehicle detecting system's efficacy. The precision, 

recall, and F1 score are important measures that offer a detailed 

picture of the system's car-detecting accuracy. Metrics that 

capture the accuracy and geographical overlap of identified 

vehicles, such as intersection over union (IoU) and mean 

average precision (mAP), also add to a comprehensive 

assessment. 

5.1 Precision 
Precision measures the accuracy of the positive predictions 

made by the system. It is calculated as the ratio of true positive 

detections to the total number of predicted positives. 

P=TP/TP+FP (1) 

where TP is the number of true positives (correctly detected 

vehicles), and FP is the number of false positives (instances 

where the system incorrectly identified a non-vehicle as a 

vehicle). 

5.2 Recall 
Recall, also known as sensitivity or true positive rate, quantifies 

the system's ability to identify all relevant instances. It is 

calculated as the ratio of true positives to the total number of 

actual positives. 

R=TP/TP+FP (2) 

5.3 Intersection over union(IoU): 
IoU measures the spatial overlap between the ground truth 

bounding box and the predicted bounding box for each detected 

vehicle. It is computed as the ratio of the intersection area to 

the union area. 

IoU = Area of intersection/Area of Union (3) 

 

5.4 Mean Average Precision(mAP): 
mAP is commonly used in object detection tasks and evaluates 

the precision-recall curve across different confidence 

thresholds. It involves calculating the average precision for 

each class and then averaging those values. 

Table 1 outlines the performance metrics of a vehicle detection 

system across different weather conditions. In clear weather, 

the system demonstrates high accuracy with a recall of 98.1% 

and precision of 98.81%. As adverse weather intensifies, 

specifically in moderate conditions, the system maintains 

strong performance with an 86.79% recall and 87.69% 

precision. Even under heavy weather, the system retains 

robustness, achieving a 75.45% recall and 75.89% precision. 

These metrics collectively emphasize the system's 

effectiveness in adverse weather scenarios, balancing the 

ability to detect vehicles (recall) with the accuracy of those 

detections (precision), crucial for real-world applications. 

Table I. Comparison Between different intensity of 

weather 

Weather Original Image Adverse weather 

Recall Precision Recall Precision 

Clear 

Weather 

98.1% 98.81% - - 

Moderat
e 
Weather 

80.24% 80.10% 86.79% 87.69% 

Heavy 
Weathe
r 

70.13% 71.14% 75.45% 75.89% 
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Table 2 summarizes the key characteristics and performance 

metrics of various YOLO-based detection methods and a fusion 

model. The fusion model, combining YOLO with Faster R-

CNN and EfficientNet, utilizes an 

ELAN-based backbone at an input size of 416, yielding a 

remarkable average precision of 0.89, comprising 6.1 million 

parameters, and achieving the lowest miss rate of 0.05. 

 

Table II. Performance Comparison between YOLO 

models 

YOLO-base 

detection 

methods 

BackBone Inp
u t 
Size 

Averag
e 
Precisi
o n 

Mis

s 

Rat

e 

YOLOV2 Darknet19 416 0.6210 0.15 

YOLOV3 Darknet53 416 0.6956 0.09 

YOLOV4 FCCL 416 0.7843 0.08 

YOLOV7 E-ELAN-based 320 0.8289 0.07 

Fusion Model 

(YOLO + 

FasterRCNN + 

EfficientNet) 

ELAN-based 416 0.8999 0.05 

 

The results of the proposed system are shown in figure 5. The 

fusion model's success lies in its ability to capitalize on the 

complementary strengths of different architectures, resulting in 

a synergistic enhancement of detection performance. The 

research findings position the proposed model as a cutting-edge 

solution in the field of vehicle detection, showcasing its 

potential for practical applications in areas such as autonomous 

vehicles, traffic monitoring, and public safety. The outcomes of 

this research underscore the model's effectiveness, accuracy, 

and versatility, making it a valuable contribution to the 

advancements in computer vision and object detection 

methodologies. 

 
Fig. 5. Detection using Fusion Method 

6. CONCLUSION 
Combining YOLO with cutting-edge defogging algorithms—

CycleGAN in particular—works well for real-time vehicle 

recognition in low-light situations. A real-time adaptive 

defogging module that dynamically adjusts to changing 

weather severity strengthens the system's flexibility. 

Evaluation measures demonstrate competitive performance 

and practical use, confirming the system's effectiveness. 

Furthermore, integrating real-time meteorological data into the 

decision-making procedure can improve the model's flexibility 

by enabling it to dynamically modify its parameters in response 

to the existing environmental circumstances. In conclusion, our 

project not only improves computer vision skills but also has a 

real impact on road safety, especially during inclement 

weather. The suggested system, which addresses visibility 

problems in nighttime driving, has potential uses in 

autonomous driving, surveillance, and transportation safety. 
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